Что такое прямая и обратная полярность при сварке

Важные параметры

Прежде чем начинать работу, надо понимать, с какими величинами предстоит иметь дело. Основные параметры, влияющие на режим сварки:

  • сила, вид и полярность в случае применения постоянного тока;
  • напряжение электрической дуги;
  • ;
  • количество проходов;
  • скорость сварки.

Второстепенными факторами, влияющими на характеристики соединения, можно назвать состояние свариваемых деталей, форму кромок, марку, тип и толщину обмазки электрода. Определенное влияние оказывает выбор вида сварочного шва.

Самым ответственным является расчет режимов при автоматической сварке. Часть характеристик выставляют по готовым таблицам, а часть приходится определять по формулам, заложенным в инструкциях на аппаратуру. Каждому оборудованию соответствуют свои таблицы, отработанные опытным путем.

1.2. Автоматическая дуговая сварка

При
этом способе сварку ведут непокрытой
электродной проволокой, дугу и сварочную
ванну защищают флюсом, подача и перемещение
проволоки механизированы. Основными
параметрами автоматической сварки под
флюсом, оказывающими влияние на размеры
и форму шва, являются: сварочный ток,
напряжение на дуге, скорость сварки,
диаметр электродной проволоки.

Силу тока
,
А, рассчитывают в зависимости от
поперечного сечения электродной
проволоки и плотности тока:

,

где

диаметр электродной проволоки в мм,
зависящий от толщины свариваемого
металла (табл. П.3.3.)

Таблица
П.3.3

Толщина

металла,
мм

3

5

8

10

12-20

свыше

20

,
мм

2

3-4

4-5

4-5

6

6-8


плотность тока в А/мм2, зависящий
от диаметра электродной проволоки
(табл. 3.4).

Таблица
П.3.4

,
мм

2

3

4

5

6-8

,
А/мм2

95

63,5

54

40

30

Напряжение
на дуге
,
В, определяют:

,

где

сварочный ток, А;
-диаметр
электродной проволоки, мм.

Скорость
сварки
,
м/час, определяют:

,

где

сварочный ток, А


коэффициент в Ам/ч,
зависящий от диаметра электродной
проволоки (табл. П.3.5)

Таблица
П.3.5.

,
мм

2

3

4

5

,
Ам/ч

(11-13)103

(13-16)103

(18-22)103

(22-30)103

Скорость
подачи проволоки определяют:

,

где

коэффициент наплавки 16 г/Ач;
плотность основного металла (углеродистые
стали) – 7,8 г/см3.

Площадь
поперечного сечения наплавленного
металла определяется как:

.

Род и полярность тока

Сварку на переменном токе используют для соединения низкоуглеродистых и низколегированных сталей (типа 09ГС) в строительно-монтажных условиях электродами с рутиловым покрытием. Для сварки толстых конструкций из низкоуглеродистых сталей. При возникновении магнитного дутья во время сварки источниками постоянного тока.

Сварку на постоянном токе можно условно разделить на два процесса — ручная дуговая сварка на прямой и обратной полярности.

На прямой полярности

Прямую полярность используют для сварки чугуна и глубокого проплавления основного металла. Для сварки низко-, среднеуглеродистых и низколегированных сталей толщиной 5 мм и более с использованием электродов с фтористо-кальциевым покрытием: УОНИ-13/45, УОНИ-13/55 и др.

На обратной полярности

Обратную полярность используют для сварки листового металла невысокой толщины и сварки с повышенной скоростью плавления электрода. Для сварки низкоуглеродистых сталей (типа 16Г2АФ), низко-, средне- и высоколегированных сталей и сплавов.

Особенности проведения работ

Электродуговая сварка чугуна и других видов металла должна проводиться правильно. Соблюдение всех принципов и правил позволит получить прочный и качественный сварной шов.

Технология ручной электродуговой сварки включает несколько особенностей:

  • На начальном этапе производится зачистка и обезжиривание заготовок, может выполняться их разрезание. К ним требуется приставить раскаленный электрод. Торцевая часть электрода делит область поверхности свариваемого элемента на ионы и электроны;
  • Для того чтобы сварка была быстрее, а результат был качественным, на поверхность сварного материала (электрода) следует нанести специальные элементы. В качестве него рекомендуется использовать кальций, калий, натрий. Они ускоряют разделение металла на частицы;
  • Сварочный процесс может осуществляться с использование открытой или закрытой дуги. В открытом состоянии в металлическую основу будет проникать много азота, это окажет пагубное влияние на структуру сварного шва. Для снижения этого негативного воздействия на электроды требуется нанести слой металла. В условиях промышленности наиболее оптимальным вариантом будет использование закрытого метода, при его проведении зона сварки будет защищена от воздействия кислорода;
  • Далее необходимо установить электрод в оборудование для электродуговой сварки — инвертер. При помощи конца прута требуется провести два раза по торцам свариваемых металлических компонентов — это произведет разжигание дуги. После того как будет включен сварочный аппарат необходимо установить ток на требуемом уровне;
  • Во время сварочного процесса электрод опирается на поверхность свариваемых деталей и медленно водится по области зазора. В сварочную ванну поступает жидкий металл, который во время застывания образует прочный и ровный сварной шов. Использование специальной технологической карты позволит точно рассчитать мощность, ток и продолжительность воздействия дуги;
  • Сваривание вертикальных швов производится при помощи дуги. Уровень угла соприкосновения электрода и свариваемой поверхности должен быть прямым. Допускается небольшое отклонение на 10 градусов;
  • Чтобы предотвратить наплавление жидкого металла в одной области может применяться техника елочки, треугольника или многослойное прохождение тонкой дуги.

Важно! Сварщик во время электродуговой сварки обязательно должен соблюдать все правила и этапы. Каждый метод сваривания подбирается в зависимости от используемого металла и условий проведения сварки (в промышленных или бытовых условиях)

Выбор силы тока в зависимости от диаметра электродов

Тонкий металл, толщиной не более 1 мм, сваривают электродами 1 мм, а сила тока при этом выставляется минимально возможных значений, в пределах 10-30 А. При сварке более толстого металла, до 2 мм, применяются электроды чуть большего диаметра, в 1,5 или 2 мм. Сила тока для сварки этими электродами выставляется в пределах 30-50 А.

Электродом 3 мм варят металл до 4 мм, а силу тока на инверторе выставляются в пределах 60-120 А. Для сварки металлов толщиной свыше 10 мм, уже используются куда более толстые электроды — 4 и 5 мм. Для нормального их использования, на сварочном аппарате приходится выставлять ток, более 120 А.

Отличия в подключении

Все, кто пользовался аппаратами для электродуговой сварки, понимает, что речь пойдет о распределении полюсов между держателем и заготовкой. Полярность при сварке бывает двух типов:

  • Прямая, когда электроны движутся к заготовке (минус на электроде). Дуга получается компактной, плотной.
  • Обратная, когда к держателю подключают плюс. Формируется рассеянная область контакта дуги с металлом.

Основное отличие сварки прямой и обратной полярности – локализация точки максимального разогрева. При прямой сильнее нагревается металл, при обратной – расходник. Способ подключения полюсов зависит от толщины и физических свойств металла.

Отличия в подключении прямой и обратной полярности

Что означает полярность при сварочных работах

В инверторных сварочных аппаратах для обозначения полярности используются надписи

Рассматривая вопрос полярности, понятно, что сварка в этом случае осуществляется током постоянного напряжения. Клеммы сварочного инвертора, куда подсоединяются силовые кабели держателя электрода и массы, обозначены значками «+» и «-». Обычно, подключая такой прибор и начиная его эксплуатировать, многие, руководствуясь инструкцией или рекомендациями знакомого специалиста, не задумываются, почему на конкретную клемму вешают именно этот, а не другой провод.

А разница все-таки есть, и здесь сокрыт недвусмысленный физический закон движения заряженных частиц – электронов. Электроны, обладая отрицательным зарядом, всегда движутся от минуса к плюсу в любой схеме, включая инвертор. При сварке можно подключить электрод как к плюсовой клемме, так и к минусовой – все будет работать. Но электроны в том и другом случае будут двигаться в разных направлениях по цепи, это отразится на процессе и конечном результате.

Подключение по схеме прямой полярности

Если схему собрать так, что плюс от инвертора идет на стальную заготовку (свариваемая деталь), потом через дуговой промежуток, сварочный электрод к минусу инвертора, то такое соединение получило название прямой полярности при сварке. В этом случае анодом выступает деталь, а катодом — электрод. Место соединения на детали будет греться сильнее, чем кончик электрода, приблизительно на 700 градусов по Цельсию.

Подключение по схеме обратной полярности

Схема подключения кабелей аппарата для сварки, когда плюс от инвертора приходит на сварной электрод, потом через дуговой промежуток попадает на рабочую деталь и минус инвертора, получила название обратной полярности при сварке. Здесь уже электрод будет греться сильнее, так как анодное пятно будет на нем, катодное – в области соединения стальных заготовок.

Наклон заготовок

Если вы думаете над тем, как рассчитать режим сварки, то не стоит упускать показатель наклона заготовок, которые используются для сваривания. В момент, когда держак проводят сверху вниз, то под дугой происходит утолщение расплава. В итоге глубина провара становится меньше, а соединение расширяется. Если сваривание начинается с нижней части с последующим движением вверх, то слой расплава под дугой истончается. Глубина ванны повышается, а соединение становится уже.

Важно! Если есть возможность при сварке производить наклон деталей, то их рекомендуется разместить так, чтобы область стыка располагалась под углом в 8-10 градусов. Если соблюдать угол в пределах указанных параметрах, то будет формироваться нормальное соединение

При большем уклоне и при осуществлении сварки на спуск из кратера вытечет весь расплавленный металл. А при проведении сваривании сверху вниз будут возникать области с непроварами

Если соблюдать угол в пределах указанных параметрах, то будет формироваться нормальное соединение. При большем уклоне и при осуществлении сварки на спуск из кратера вытечет весь расплавленный металл. А при проведении сваривании сверху вниз будут возникать области с непроварами.

Электрическое сопротивление проводников

Сопротивление проводника зависит:

— от длины проводника – с увеличением длины проводника его электрическое сопротивление возрастает;
— от площади поперечного сечения проводника – с уменьшением площади поперечного сечения сопротивление увеличивается;
— от температуры проводника – с увеличением температуры сопротивление увеличивается;
— от коэффициента удельного сопротивления материала проводника.

Чем больше сопротивление проводника прохождению электрического тока, тем больше энергии теряют свободные электроны, и тем сильнее нагревается проводник (которым обычно является электрический провод).

Для каждой площади сечения провода существует допустимая величина тока. Если сила тока окажется больше этой величины, то провода могут нагреться до высокой температуры, что, в свою очередь, может вызвать воспламенение изоляционного покрытия.

Максимальные допустимые значения силы тока для различных сечений медных изолированных сварочных проводов приведены ниже в таблице:

Поперечное сечение провода, мм2 16 25 35 50 70
Предельно допустимый ток, А 90 125 150 190 240

Запомните! Величина тока в амперах (I), приходящаяся на один квадратный миллиметр площади поперечного сечения провода (S), называется плотностью тока (j):

j (А/мм2) = I (А) / S (мм2)

Виды дуговой сварки

РД сварка металлоконструкций может проводиться разными способами, которые могут отличаться технологией, видами используемого оборудования и расходных материалов.

Выделяют несколько классификаций, которые пользуются высоким спросом:

  • в зависимости от вида механизации — механизированный или автоматизированный способ;
  • в соответствии с видом и полярностью тока;
  • тип электрической дуги;
  • разновидность используемой защиты сварочной области;
  • в зависимости от используемых электродов.

Но стоит учитывать, что каждый вид имеет подвиды сварочного процесса. Каждый из них имеет определенную технику проведения. Все же стоит рассмотреть каждую классификацию сварки с использованием дуги.

В соответствии с автоматизацией сварных работ выделяют:

  1. Ручного типа.
  2. Полуавтоматическая — подача проволоки для сварочного процесса осуществляется автоматически, а движение электрода производится вручную.
  3. Автоматического вида — передвижение проволоки и электрода производится автоматически.

В зависимости от вида и полярности тока сварка бывает:

  1. С использованием постоянного тока. Осуществляет соединение поверхностей при помощи тонкого шва.
  2. С применением высокочастотного тока. Плавление электрода осуществляется струйно, устраняются прорези, привариваются прихваты.
  3. Импульсная.
  4. С применением переменного тока. Обычно эта технология применяется для разрезания металлических листов.

В зависимости от типа защитного средства от влияния кислорода:

  • шлаковая;
  • флюсовая;
  • инертно-газовая.

Стоит отметить! Все способы защиты могут зависеть от условий и целей рабочего процесса. Главное назначение состоит в предотвращении попадания в сварочную область кислорода, который негативно влияет на прочность шва.

В зависимости от видов используемых электродов:

  1. Плавящийся стержень с обсыпкой. Используется для формирования сварочной зоны и соединения кромок.
  2. Неплавящийся стержень из вольфрама. Применяется для формирования напылений, восстановления поврежденных или разрушенных заготовок, наваривания наплывов.

В соответствии с условиями горения выделяют:

  1. Открытая дуга. Она видима, но наблюдение за ней должно производиться через специальные средства для защиты глаз. Открытый вид применяется при проведении ручной технологии и сварок с защитными газами.
  2. Закрытая. Вид дуги невозможно увидеть визуально. Она присутствует в составе расплавленной металлической смеси — флюсе, шлаке.
  3. Полуоткрытого вида. Дуга видна. Но видеть возможно только одну часть. Первая имеется в металле, а вторая располагается над ним. Наблюдать за сваркой рекомендуется только через элементы для защиты глаз. Этот вид дуги используется при сваривании алюминия автоматическим способом.

По способу защиты сварной ванны:

  • без использования защитных элементов — голый электрод, стабилизирующее покрытие электрода;
  • применение шлаковой защиты — под флюсом, толстопокрытые стержни;
  • шлакогазовая защита — стержни толстопокрытого типа;
  • газовая защита — в газовой среде;
  • комбинированные защитные средства — среда из газа, покрытие, флюс.

Назначение электрода

Таблица видов электродов для сварки.

По назначению электроды разделяют для:

  • работы со сталями с высоким уровнем легирующих элементов;
  • со средним содержанием легирующих элементов;
  • сварки конструкционных сталей;
  • пластичных металлов;
  • наплавления;
  • теплоустойчивых сталей.

Таким образом, можно подобрать электроды для каждой конкретной задачи.

Отдельное внимание следует обратить на защитное покрытие. Обмазка электродов – важная составляющая, к которой предъявляются особые требования

Кроме того для нее характерен определенный состав.

Они представляют собой стержень, покрытый особой оболочкой. Мощность зависит от того, какой у него диаметр.

Наиболее популярными являются электроды УОНИ. Существует несколько марок данного материала и все они используются для ручного сваривания.

УОНИ 13-45 позволяют получать швы приемлемой вязкости и пластичности. Они применяются для сварки при литье и поковки. В составе таких стержней содержится никель и молибден.

УОНИ 13-65 подходят для работы на конструкциях с повышенными требованиями. Они могут осуществлять соединения в любых положениях. Диаметр варьируется от двух до пяти миллиметров, чем он больше, тем больше сварочный ток.

Кроме того соединения, полученные с их помощью, характеризуются высокой ударной вязкостью и в них не формируются трещины. Все это делает их наиболее перспективными в работе с ответственными конструкциями, к которым предъявляются жесткие требования.

Помимо этого данные конструкции оказываются устойчивыми к перепадам температур, вибрациям и нагрузкам

Важной особенностью стержней данного типа является существенная стойкость к действию влаги и возможность длительного прокаливания

Виды покрытия

Покрытия электродов включают следующие составляющие:

  • раскисляющие вещества;
  • компоненты для стабильного горения дуги;
  • элементы, обеспечивающие пластичность, такие как каолин или слюда;
  • алюминий, кремний;
  • связующие вещества.

Ко всем электродам для точечных или ручных сварочных работ с покрытием предъявляют ряд требований:

  • высокая эффективность;
  • возможность получение результата с необходимым составом;
  • незначительная токсичность;
  • надежный шов;
  • стабильное горение дуги;
  • прочность покрытия.

Виды покрытия электродов.

Выделяют следующие виды покрытий электродов:

  • целлюлозное;
  • кислое;
  • рутиловое;
  • основное.

Первый тип позволяет выполнять работу во всех пространственных положениях постоянным и переменным током. Они наиболее широко применяются в монтаже. Характеризуются существенными потерями на разбрызгивание и не допускают перегрева.

Рутиловое и кислое позволяют варить во всех положениях, кроме вертикального, постоянным и переменным током. Второй тип покрытия не целесообразен для работы со сталями с высоким содержанием серы и углерода.

Перечисленные выше типы оболочек подразумевают использование только одного конкретного вида покрытия. Однако возможны сочетания нескольких вариантов. Комбинации могут складываться из нескольких типов в зависимости от решаемой задачи.

Комбинированные оболочки относятся к отдельному классу и их не причисляют к основным четырем видам.

Существует также классификация в зависимости от толщины покрытия.

Каждой толщине присваивается отдельное буквенное обозначение:

  • тонкие – М;
  • средней толщины – С;
  • толстые – Д;
  • особо толстые Г.

Конечно же, стержни выбираются в соответствии с поставленными целями. Правильный выбор гарантирует высокое качество выполняемой работы.

https://www.youtube.com/watch?v=AvCg7p3no98

Марки электродов

Расшифровка маркировки электрода.

Существуют различные марки электродов, предназначенные для решения определенных задач. Они характеризуются определенными свойствами, что позволяет подобрать наиболее подходящий материал.

Марка ОК-92.35 характеризуется удлинением в шестнадцать процентов и пределом текучести и прочности в 514 МПа и 250 НВ соответственно. Предел текучести ОК-92.86 составляет 409 МПа.

Марки электродов для ручной сварки Ок-92.05 и ОК-92.26 обладают относительным удлинением в 29% и 39%, а пределом текучести – 319 и 419 МПа соответственно.

Предел текучести ОК-92.58 составляет 374 МПа.

Все вышеперечисленные электроды используются для ручной дуговой сварки по чугуну. В зависимости от того, с каким металлом предстоит работать, выбирают также специальный тип стержня. Например, для меди – АНЦ/ОЗМ2, чистого никеля – ОЗЛ-32, алюминия – ОЗА1, монеля – В56У, силумина – ОЗАНА2 и т.д.

Кроме того, сварщику необходимо также контролировать качество свариваемых деталей. В зависимости от материала, условий работы, положения шва и других факторов, выбирают соответствующий электрод, который обеспечит наилучшее качество соединения.

Технические возможности

Ручная сварка имеет существенные ограничения по толщине свариваемых деталей, это ее основной недостаток. Как правило, листы толще 10 мм этим способом не сваривают.

К другим можно отнести сравнительно низкую скорость процесса и прямую зависимость результата от мастерства сварщика. Процесс ручной сварки, как и любой ручной процесс, трудно стандартизировать: результат зависит от многих факторов. Среди них:

  • тип источника тока;
  • мощь источника;
  • характеристика и свойства обрабатываемого сплава;
  • толщина кромок;
  • соответствие электродов возложенной на них задаче;
  • грамотно подобранный режим сварки.

Особенности дуговой сварки заключаются в том, что для ее продуцирования используется сравнительно малое напряжение — и очень большой ток. Напряжение дуги составляет от 30 до 90 В (многие сварочные аппараты для бытового применения рассчитаны на среднее значение — 48 В), но очень большую силу тока — от 90 до 350 А.

Обратная или прямая полярность?

Чтобы выбрать режим сварки штучным электродом с покрытием, не менее важно определить, в какой режим работы перевести сварочный инвертор. Всего их два, это обратная и прямая полярность

Чтобы варить тонкий металл инвертором и не прожечь его впоследствии, сварочный аппарат рекомендуется переводить в обратную полярность, когда поток электродов направлен не на заготовку, а на электрод. И наоборот, если подключить инвертор в прямой полярности, то можно улучшить качество сварки, например, когда нужно проварить толстый металл.

Для подключения инвертора в обратную полярность (для сварки тонкого металла):

К держателю с электродом подводится плюсовая клемма, а к заготовке клемма с минусом.

Для подключения инвертора в прямой полярности (для сварки толстых металлов):

К держателю с электродом подводится минусовая клемма, а к заготовке клемма с плюсом.

Чтобы правильно выбрать режим сварки инвертором необходимо учесть множество всевозможных нюансов. Только таким образом получится добиться качественного и надежного сварочного соединения, которое выдержит большие нагрузки.

Влияние полярности тока на процесс сварки тиг

Полярность тока сварки существенным образом сказывается на характере протекания процесса дуговой сварки в инертном газе вольфрамовым электродом. В отличии от сварки плавящимся электродом (к которой относится сварка ММА и МИГ/МАГ) при сварке неплавящимся электродом в защитной среде инертного газа различия в характере процесса сварки на обратной и прямой полярности носят противоположный характер.

Так при использовании обратной полярности процесс сварки ТИГ характеризуется следующими особенностями:

— сниженный ввод тепла в изделие и повышенный в электрод (поэтому при сварке на обратной полярности неплавящийся электрод должен быть большего диаметра при одном и том же токе; в противном случае он будет перегреваться и быстро разрушится);
— зона расплавления основного металла широкая, но неглубокая;
— наблюдается эффект катодной чистки поверхности основного металла, когда под действием потока положительных ионов происходит разрушение окисной и нитридной пленок (так называемое катодное распыление), что улучшает сплавление кромок и формирование шва.

В то время как при сварке на прямой полярности наблюдается:

— повышенный ввод тепла в изделие и сниженный в электрод;
— зона расплавления основного металла узкая, но глубокая.

Как и в случае сварки ММА и МИГ/МАГ, различия свойств дуги при прямой и обратной полярности при сварке ТИГ связаны с несимметричностью выделения энергии на катоде и аноде. Эта несимметричность, в свою очередь, определяется разностью в значениях падения напряжения в анодной и катодной областях дуги. В условиях сварки неплавящимся электродом катодное падение напряжения значительно ниже анодного падения напряжения, поэтому тепла на катоде выделяется меньше, чем на аноде.

Ниже приведен примерный объем выделения тепла на различных участках дуги применительно к сварке ТИГ при токе сварки 100 А и при использовании прямой полярности (как произведение падения напряжения в соответствующей области дуги на ток сварки):

— в катодной области: 4 В х 100 А = 0,4 кВт на длине ≈ 0,0001 мм
— в столбе дуги: 5 В х 100 А = 0,5 кВт на длине ≈ 5 мм
— в анодной области: 10 В х 100 А = 1,0 кВт на длине ≈ 0,001 мм.

В связи с тем, что при сварке на прямой полярности наблюдается повышенный ввод тепла в изделие и сниженный в электрод, при сварке на постоянном токе используют прямую полярность. При этом, благодаря тому, что тепло выделяется, в основном, в анодной области, плавятся только те участки основного металла, на которые направляется дуга, т.е. где оказывается размещенным анод.

Как узнать где у конденсатора полярность

У большинства элементов принята боле-менее однообразная система маркировки полярности. Обозначение полярности конденсатора имеет несколько типов, которые нетрудно запомнить:

  • Внешний вид (форма корпуса, длина и толщина ножек);
  • Маркировка (нанесение соответствующих символов у выводов или на корпусе);
  • Обозначения на электронных схемах.

По внешнему виду

Как определить полярность конденсатора по внешнему виду? Наиболее просто это сделать для приборов с цилиндрическим корпусом, у которых выводы расположены на противоположных торцах (аксиальный тип корпуса). Даже если маркировка полностью стерта, то тот вывод, который присоединен напрямую к металлическому корпусу, имеет знак «минус».

Вывод, установленный на корпусе через изолятор (в данном месте обычно имеется утолщение или изменение формы корпуса) соответствует положительной полярности, то есть «плюс».


Аксиальная форма корпуса

Новые, не спаянные типы алюминиевых конструкций с ножками, расположенными в непосредственной близости друг к другу (радиальный корпус), имеют более длинный положительный вывод.

Иногда в старой аппаратуре можно встретить электролитические конденсаторы с одним выводом, которые крепятся к корпусу конструкции при помощи гайки. Здесь гайка – «минус», вывод «плюс».

Вам это будет интересно Перевод ватт в киловатты


Гаечное крепление

Еще реже попадаются элементы также с гаечным креплением, но с двумя выводами. Принцип маркировки во многом схож с предыдущим случаем, но здесь мы имеем дело со сдвоенным конденсатором, у которого общий «минус» находится на корпусе, а «плюс» расположен на выводах (каждый вывод соответствует отдельной емкости).

По маркировке

Производители также наносят маркировку на корпусе элементов. Здесь может быть несколько вариантов:

  • Знак «минус» на боковой поверхности цилиндра со стороны отрицательного вывода;
  • Знак «плюс» непосредственно у положительной ножки элемента;
  • Широкая темная полоса на торце напротив отрицательного вывода (обычно у твердотельных электролитических конденсаторов.

Обратите внимание! Для SMD компонентов обозначение обратное – широкая светлая или темная полоса возле положительной площадки. Маркировка твердотельных и SMD компонентов


Маркировка твердотельных и SMD компонентов

По схеме

На электрических схемах конденсаторы обозначаются в виде двух параллельных линий, которые символизируют обкладки. Возле положительного вывода ставят символ «+», или этот вывод обозначают более толстой линией, либо в виде узкого прямоугольника.

Некоторые производители электроники рисуют на схемах отрицательный вывод в виде отрезка дуги.


Обозначение на принципиальных схемах

Не печатных платах электролитический конденсатор имеет такие обозначения полярности:

  • Как на электрических принципиальных схемах;
  • В виде круга, у которого закрашен узкий сегмент в месте пайки отрицательного вывода.

1 Выбор шпаклевки – какая пригодна для заполнения швов?

Полярность сварочных электродов:как определить прямую и обратную полярность?

Электродуговая сварка может осуществляться при помощи оборудования, вырабатывающего постоянный или переменный ток. Если работа на переменном токе не имеет нюансов в вопросе правильного подключения массы и держателя электрода, то при сварке на постоянном токе полярность сварочных электродов имеет большое значение.

Общие понятия

В зависимости от того какой полюс сварочного автомата подключен к держателю, определяется тип и особенности режима сварки:

  • Сварка на прямой полярности предполагает подключение положительного полюса к соединяемым заготовкам (массе), и отрицательного к держателю электрода.
  • Для выполнения работ при обратной полярности полюса меняются местами (плюс на держатель, минус на массу).

Несмотря на то, какая полярность электродов применяется, сварка на постоянном токе имеет общие особенности по сравнению с применением переменного напряжения:

  • Благодаря тому, что направление движение электронов постоянное, при сварке не происходит чрезмерного разбрызгивания расплавленного металла. Именно поэтому сам шов получается более качественным, аккуратным.
  • Полярность подключения электродов играет большую роль потому, что положительный и отрицательный элементы нагреваются по разному, а это оказывает влияние не только на глубину провара, но и количество переносимого с плавящегося электрода металла.
  • В любом случае необходимо обеспечить качественный контакт провода с обрабатываемой деталью, только так можно обеспечить устойчивость и надежность сварочной дуги.

Сварка на прямой полярности

При таком способе подключения электродов большему нагреву подвергается заготовка, а не электрод. Такой режим характеризуется выделением значительно большего количества тепла.

Поэтому сварка на прямой полярности рекомендована для выполнения следующих операций:

  • Резка металла любым типом электродов.
  • Сварка заготовок значительной толщины.
  • Работа с металлами, имеющими более высокую температуру плавления.

Именно в этих случаях требуется разогрев обрабатываемых деталей до более высоких температур, для выполнения этих работ требуется значительное тепловыделение.

Сварка на обратной полярности

В данном случае большему разогреву подвергается электрод, поэтому на заготовку передается меньшее количество тепловой энергии.

Благодаря этому электроды обратной полярности позволяют выполнять работы в более мягком (деликатном) режиме.

Это актуально во многих случаях, например, сварка нержавеющей или тонкой листовой стали, сплавов, чувствительных к тепловому воздействию.

Так же такое подключение используется для работ в среде защитных газов или под флюсом.

Определение необходимой полярности

О том, как определить полярность электродов при сварке, существует множество споров, при этом каждая сторона приводит правильные, казалось бы доводы. Противники указанной выше версии ссылаются на учебники по технологии сварочного производства, изданные еще в середине прошлого века, считая, что сведения указанные в них наиболее правильные.

Но стоит учитывать то, что с тех пор произошло существенное усовершенствование сварочной техники и расходных материалов. Поэтому основываться на рекомендациях, касающихся устаревших технологий, все-таки не стоит. Наиболее правильным считается именно описанный выше выбор полярности.

Существует еще одна группа сварщиков, считающих, что любые работы лучше (вернее удобней) выполнять исключительно на обратной полярности. Это связано в первую очередь с тем, что в таком режиме электроды меньше липнут и отсутствует риск прожига металла. Но появление инверторной сварочной техники решило и эту проблему.

На сегодняшний день производители уже предлагают электроды, способные работать при любом напряжении и различной полярности.

Правильный выбор полярности подключения электродов способствует упрощению сварочного процесса и повышению качества шва.

В зависимости от ряда факторов, сварочная дуга, подаваемая при сварке постоянным током, может иметь прямую или обратную полярность. В первом случае к обрабатываемым элементам подводится заряд «плюс», а к электроду — «минус». Обратная полярность при сварке отличается подачей к электроду «плюса» и «минуса» к детали. Подробнее о специфике методов — далее.

Читать также: Детский снегоход из бензопилы и снегоката

Оцените статью
Рейтинг автора
5
Материал подготовил
Андрей Измаилов
Наш эксперт
Написано статей
116
Добавить комментарий