Устройство и схема включения люминесцентной лампы

Как загорается люминесцентная лампа?

Как работает люминесцентная лампа? Функционирование люминесцентного осветительного прибора обеспечивается следующими поэтапными действиями:

  • на электроды, расположенные на цокольных штырях, подаётся напряжение;
  • высокое сопротивление газовой среды в лампе провоцирует поступление тока через стартер с образованием тлеющего разряда;
  • ток, проходящий через электродные спирали, в достаточной степени прогревает их, а разогретые стартерные биметаллические контакты замыкаются, что прекращает разряд;
  • после остывания стартерных контактов происходит их полное размыкание;
  • самоиндукция вызывает возникновение импульсного напряжения дросселя, достаточного для включения освещения;
  • проходящий через газовую среду ток уменьшается, а полное отключение стартера обуславливается недостаточностью напряжения.

Лампы спецназначения

Основным назначением устанавливаемых конденсаторов является эффективное снижение помех

Входные конденсаторы обеспечивают существенное понижение реактивной нагрузки, что важно при необходимости получить качественное освещение и продлить срок службы прибора

Блок 1

Схемы подключения

Перед тем как сделать разводку электропроводки для точечных встроенных светильников, нужно произвести монтаж распределительной коробки. Причем сделать это требуется так, чтобы к ней всегда был открыт доступ. Только после этого можно протягивать кабельные линии к местам установки осветительных приборов.

Есть несколько схем разводки электрических кабелей, по которым можно проводить монтаж проводки для точечных светильников. Выбор схемы напрямую зависит от типа используемых ламп. Например, при выборе ламп мощностью 12 В в схему нужно включить трансформатор. Если же были выбраны споты, которые работают от бытовой сети в 220 В, наличие преобразователя не требуется. Их можно подключить напрямую к сети.

Последовательное

Схема последовательного подключения проста, поскольку не требуется большого количества проводов. Но есть у нее и некоторые недостатки. Например, при использовании последовательного подсоединения в систему можно включить не более пяти – шести ламп. К тому же они будут светиться не в полную силу. И при выходе из строя одной лампы цепь разорвется, освещение в комнате будет отсутствовать.

Следите за тем, чтобы на выключатель шла фаза, которая в дальнейшем направляется на лампы, а нуль поддавался только на последний в цепочке светильник.

Если для электропроводки используется трехжильный кабель, то провод, отвечающий за заземление, должен подаваться на каждую лампу к нужной клемме. В остальном проводка должна быть разведена так же.

Параллельное

Для обеспечения полноценной работы используется параллельное подключение. В этом случае все лампы будут светить с нормальной интенсивностью. В случае выхода из строя одного устройства освещение в комнате не пропадет. Но нужно заготовить большее количество проводников. Лучше использовать кабель ВВГ нг 2*1,5 или 3*1,5, он является негорючим трехжильным.

Есть два способа параллельного подключения точечных устройств:

  • к каждому источнику света подаются два кабеля;
  • шлейфное соединение, при котором оба провода попеременно заходят на светильник и с выхода подаются дальше.

Во втором случае из распределительной коробки выходит кабель, который подается на первый светильник. К его выходу нужно подключить кусок провода и протянуть его к следующему светильнику. То есть несколько отрезков кабеля соединяют лампы между собой одну за другой. При этом есть возможность разделить их на две и более группы в зависимости от количества клавиш на выключателе, схема будет такой же. Но данное подключение потребует увеличения количества проводов.

Лучевое

При лучевом подключении используется отдельный кусок провода для каждого светильника. Такой способ подключения требует наибольших затрат кабеля, но это компенсируется повышенной надежностью эксплуатации, то есть выход из строя одной точки освещения не влияет на работу других устройств.

Физически такая схема выглядит следующим образом. От распределительной коробки проводится кабель, который крепится в удобном месте, например, по центру комнаты. От этого кабеля идут ответвления к каждому прибору, причем и провод фазы, и провод нуля.

Сложность такого подключения заключается в том, что нужно обеспечить надежное соединение кабелей от осветительного прибора с проводом до распределительной коробки. Поэтому нужно подготовить обычные клеммные колодки с винтовым соединением.

Схемы включения люминесцентных ламп

Наиболее распространенные схемы включения люминесцентных конструкций:

  • схема подключения с использованием электромагнитного балласта;
  • схема включения люминесцентных приборов освещения с применением электронного балласта.

Теперь давайте рассмотрим обе схемы более подробно.

Схема подключения люминесцентной лампы посредством электромагнитного балласта (ЭмПРА)

Сокращение ЭмПРА означает электронный пускорегулирующий аппарат, который еще известен как балласт либо же его называют дросселем.

Мощность ЭмПРА обязана соответствовать суммарной мощности ламп, которые подключены к нему. Данная стартерная схема достаточно старая и активно используется уже далеко не первое десятилетие. Стартером в этой схеме называют небольшую лампу, оснащенную неоновым наполнением, также в нее входят два биметаллических электрода.

Принцип включения люминесцентной конструкции согласно этой схеме следующий:

  • во время включения электропитания в стартере происходит разряд;
  • биметаллические электроды замыкаются накоротко;
  • ток в цепи стартера и электродов сводится только к внутреннему сопротивлению дросселя, что повышает рабочий ток почти втрое и разогревает ламповые электроды буквально за мгновение;
  • в это же время биметаллические контакты остывают и размыкается цепь;
  • в момент разрыва цепи дроссель создает запускающий импульс до 1 кВт, что происходит благодаря его самоиндукции;
  • происходит разряд в газовой среде прибора и он включается.

Помните, что стартеры на 127 Вольт не смогут работать в одноламповой системе и для нее потребуется стартер на 220 Вольт.

ЭмПРА, используемое при данной схеме, имеет свои преимущества:

  • удобство конструкции;
  • относительная надежность;
  • доступная цена.

Однако такой балласт имеет и свои недостатки, в числе которых следующие:

  • расход электроэнергии выше более чем на 15 процентов по сравнению со схемой подключения на основании электронного балласта;
  • время запуска зависит от износа конструкции и колеблется до 3 секунд;
  • со временем усиливается звук от гудения дроссельных пластин;
  • часто возникает стробоскопический эффект мерцания люминесцентной лампы, что негативно может сказаться на зрении человека;
  • система дает сбои при низких температурах. Так, ничего не будет работать в сильные холода в неотапливаемых помещениях при включении посредством данной схемы.

Схема подключения люминесцентной лампы при помощи электронного балласта (ЭПРА)?

ЭПРА расшифровывается как электронный пускорегулирующий аппарат (он же балласт). В отличие от электромагнитного балласта он подает на лампу напряжение не сетевой частоты, а высокочастотное (25-133 кГц). Такая схема исключает появление мигания, которое так часто нас раздражает и негативно влияет на зрение. В данном аппарате применена автогенераторная схема, которая включает трансформатор и выходной каскад с транзисторами.

Схемы подключения люминесцентных ламп при помощи электронного балласта есть разные, чаще всего они нанесены на блок конструкции и подключить их тем или иным способом не составляет труда.

Схемы с применением электронного пускорегулирующего балласта тоже имеют свои преимущества и недостатки.

Преимущества их такие:

  • специальный режим работы и запуска ЭПРА позволяет увеличить срок эксплуатации люминесцентной лампы;
  • до 20 процентов экономии электроэнергии по сравнению с электромагнитным балластом;
  • отсутствие шумов и мерцаний при работе лампы;
  • отсутствие часто ломающегося стартера;
  • наличие моделей, где есть возможность диммирования (регулировки яркости света).

Недостатков у данного балласта не так уж и много и они не слишком существенны:

  • сложная схема подключения;
  • высокие требования к качеству комплектующих и их установке.

Люминесцентные осветительные конструкции привыкли покупать те люди, которые хотят оптимизировать потребление электричества дома и на работе, а также желают сократить траты на приобретение новых осветительных приборов, приходящих со временем в негодность. Благодаря балластам, люминесцентные конструкции работают корректно. Естественно, больше преимуществ у схем включения люминесцентных ламп при помощи современного электронного балласта ЭПРА.

Применение умножителей напряжения

Способ дает возможность включать ЛЛ без электромагнитного балласта, но применяется преимущественно для продления жизни лампам. Схема включения сгоревших люминесцентных ламп позволяет им проработать еще некоторое время, если мощность не превышает 20-40 Вт. При этом нити накала могут быть как целыми, так и перегоревшими. В обоих случаях выводы каждой нити накала нужно закоротить.

После выпрямления напряжение удваивается, и лампа загорается моментально. Конденсаторы С1, С2 выбираются под рабочее напряжение 600 В. Их недостаток заключается в больших габаритах. Конденсаторы С3, С4 устанавливают слюдяные на 1000 В.

ЛЛ не предназначена для питания постоянным током. Со временем ртуть скапливается около одного из электродов, и свечение ослабевает. Для его восстановления изменяют полярность, перевернув лампу. Можно установить переключатель, чтобы ее не снимать.

Инструкция по замене люминесцентных трубок

При выполнении замены люминесцентных трубок на светодиодные устройства, работы могут быть выполнены двумя способами, это: установка светодиодных источников света, оснащенных аналогичными контактами (G13) и одинаковых геометрических размеров или установка в корпус светильника светодиодных плат с линзами.

Работы осуществляются в одинаковой последовательности, но с некоторыми различиями в характере их выполнения.

Реконструкция выполняется в следующей последовательности:

  • Пред началом работ светильник выключается, для этого недостаточно просто отключить выключатель, а требуется отключение питания всей групповой линии в осветительном щитке (автоматический выключатель);
  • Работы выполняются с использованием исправного инструмента, а при выполнении работ на высоте – исправных лестниц-стремянок или монтажных лесов.
  • Персонал, выполняющий работы должен быть одет в спецодежду и иметь индивидуальные средства защиты: перчатки, каски, монтажные пояса — при работе на высоте.
  • При отключении групповой линии, на автоматический выключатель вывешивается запрещающий плакат «Не включать, работают люди».
  • После выполнения подготовительных работ выполняется удаление люминесцентных ламп и стартеров из корпуса светильника. Лампы передаются ответственному лицу для дальнейшей утилизации.
  • Выполняется пере подключение контактного соединения, исключающего использование дросселя, установленного в светильник. Гнезда соединения подключаются непосредственно к клеммной колодке, на которую подается питание групповой линии.
  • При установке светодиодной лампы трубчатого вида, выполняется ее монтаж посредством штырькового соединения. Штырьки вставляются в разъем, после чего лампа поворачивается вокруг своей оси до момента, когда штырьки войдут в гнезда контактного соединения. Проверяется работоспособность светильника.
  • При установке платы с линзами, они также подключаются к клеммной колодке. Их крепление, в корпусе светильника, осуществляется с использованием магнитов, идущих в комплекте поставки с платами, или при помощи саморезов, которые крепят платы через отверстия, предусмотренные в их корпусе. После установки и подключения, выполняется проверка работоспособности.
  • После завершения работ выполняется уборка помещения и убираются запрещающие плакаты.

Принцип работы люминесцентного светильника

Особенность работы люминесцентных светильников заключается в том, что их нельзя напрямую подключать в сеть питания. Сопротивление между электродами в холодном состоянии большое, и величина тока, протекающего между ними, недостаточна для возникновения разряда. Для зажигания требуется импульс высокого напряжения.

Лампа с зажженным разрядом характеризуется низким сопротивлением, которое имеет реактивную характеристику. Для компенсации реактивной составляющей и ограничения протекающего тока последовательно с люминесцентным источником света включается дроссель (балласт).

Многим непонятно, для чего нужен стартер в люминесцентных лампах. Дроссель, включенный в цепь питания совместно со стартером, формирует импульс высокого напряжения для запуска разряда между электродами. Так получается потому, что при размыкании контактов стартера на выводах дросселя формируется импульс ЭДС самоиндукции величиной до 1кВ.

Для чего нужен дроссель

Использование дросселя для люминесцентных ламп (балласта) в цепях питания необходимо по двум причинам:

  • формирование напряжения запуска;
  • ограничение тока через электроды.

Принцип работы дросселя основан на реактивном сопротивлении катушки индуктивности, которой является дроссель. Индуктивное сопротивление вносит сдвиг фаз между напряжением и током, равный 90º.

Из того, что ограничивающей ток величиной, является индуктивное сопротивление, следует, что дроссели, предназначенные для ламп одной мощности, нельзя использовать для подключения более или менее мощных устройств.

В некоторых пределах возможны допуски. Так, ранее отечественная промышленность выпускала люминесцентные светильники с мощностью 40 Вт. Дроссель 36W для люминесцентных ламп современного производства можно без опасений использовать в цепях питания устаревших светильников и наоборот.

Отличия дросселя от ЭПРА

Дроссельная схема включения люминесцентных источников освещения отличается простотой и высокой надежностью. Исключение составляет регулярная замена стартеров, поскольку в их состав входит группа размыкающих контактов для формирования импульсов запуска.

В то же время схема имеет существенные недостатки, которые заставили искать новые решения включения ламп:

  • длительное время запуска, которое увеличивается по мере износа лампы или снижения напряжения питания;
  • большие искажения формы напряжения питающей сети (cosф
  • мерцание свечения с удвоенной частотой питающей сети из-за малой инерционности светимости газового разряда;
  • большие массо-габаритные характеристики;
  • низкочастотный гул из-за вибрации пластин магнитной системы дросселя;
  • низкая надежность запуска при отрицательных температурах.

Проверка дросселя ламп дневного света затрудняется тем, что приборы для определения короткозамкнутых витков распространены мало, а при помощи стандартных приборов можно только констатировать факт наличия или отсутствия обрыва.

Для устранения указанных недостатков разработаны схемы электронной пуско-регулирующей аппаратуры (ЭПРА). Работа электронных схем основана на другом принципе формирования высокого напряжения запуска и поддержания горения.

Высоковольтный импульс генерируется электронными компонентами, а для поддержки разряда используется высокочастотное напряжение (25-100 кГц). Работа ЭПРА может осуществляться в двух режимах:

  • с предварительным подогревом электродов;
  • с холодным запуском.

В первом режиме на электроды подается низкое напряжения в течение 0.5-1 секунды для первоначального нагрева. По истечении времени подается высоковольтный импульс, из-за которого происходит зажигание разряда между электродами. Данный режим технически реализуется сложнее, но увеличивает срок службы ламп.

Режим холодного запуска отличается тем, что напряжение запуска подается на непрогретые электроды, вызывая быстрое включение. Такой способ запуска не рекомендован для частого использования, поскольку сильно сокращает срок работы, но его можно использовать даже с лампами с неисправными электродами (с перегоревшими нитями накала).

Схемы с электронным дросселем имеют такие преимущества:

полное отсутствие мерцания;
широкий температурный диапазон использования;
малые искажения формы напряжения сети;
отсутствие акустических шумов;
увеличение срока службы источников освещения;
малые габариты и вес, возможность миниатюрного исполнения;
возможность диммирования — изменения яркости путем управления скважности импульсов питания электродов.

Ремонт люминесцентного светильника. Основные неисправности и их устранение. Инструкция

Если светильник не пытается зажечься, перед поиском неисправности в нем нужно измерить напряжение на его входных клеммах. Если оно есть, то последовательность поиска такова:

Слегка покрутить лампы вокруг продольной оси. При правильной установке контакты ее должны располагаться параллельно плоскости светильника. Это положение определяется по максимуму усилия вращению или при повторной установке с запоминанием их положения в пространстве.
Заменить стартер на заведомо исправный. Электрики, обслуживающие помещения с люминесцентными светильниками, всегда имеют под рукой запас стартеров для проверки. При его отсутствии можно временно снять стартер с работающего светильника. При этом можно его оставить в работе – стартер не влияет на работоспособность уже зажженной люминесцентной лампы.
Проверить исправность лампы (ламп). В светильниках, имеющих две лампы, они включены последовательно. Стартер и дроссель для них общие. Четырехламповые светильники конструктивно представляют собой два двухламповых, объединенных в одном корпусе. Поэтому при выходе из строя одной лампы, вместе с ней гаснет и вторая.
Исправность ламп проверяют методом замены на исправные. Можно измерить мультиметром сопротивление нитей накала – оно не превышает десятков Ом. Почернение изнутри колбы лампы в районе нитей не свидетельствует о неисправности, но проверке она подвергается в первую очередь.
Если стартер и лампа исправны, проверяется дроссель. Его сопротивление, измеренное мультиметром, не превышает сотен Ом. Можно воспользоваться индикаторной отверткой, проверив прохождение «фазы» через дроссель: если она есть на его входе, то должна быть и на выходе. При возникновении сомнений дроссель заменяют.
Проверить исправность проводки светильника

Обратить внимание на контактные соединения дросселя, стартера и патронов ламп. Для удобства выполнения этой операции светильник лучше снять с потолка и положить на стол

Так будет удобнее и безопаснее.

Схема люминесцентного светильника с одной лампой Если светильник безуспешно пытается зажечься, то причину ищут в очередности: стартер, лампа, дроссель. Выход их из строя в данной ситуации равновероятен.

Схема люминесцентного светильника с двумя лампами

При использовании электронной пуско-регулирующей аппаратуры (ЭПРА) определить ее исправность, используя мультиметр, не просто. В этом случае, поменяв лампы на новые, проверив исправность всех контактных соединений, заменяют ЭПРА. Ее можно отремонтировать, но для этого нужны знания в электронике: умение проверять электронные компоненты и работать паяльником, разбираться в схемах и принципах их работы.


Электронная пуско-регулирующая аппаратура

Если яркость свечения лампы снизилась, то ее необходимо заменить. При отрицательных температурах люминесцентные лампы зажигаются дольше или не зажигаются совсем.

Классическое подключение через электромагнитный балласт

Особенности схемы

В соответствии с этой схемой в цепь включается дроссель. Также в составе схемы обязательно присутствует стартер.

Дроссель для люминесцентных лампСтартер для люминесцентных ламп — Philips Ecoclick StartersS10 220-240V 4-65W

Последний представляет собой маломощный неоновый источник света. Устройство оснащено биметаллическими контактами и питается от электросети с переменными значениями тока. Дроссель, стартерные контакты и электродные нити подключаются последовательно.

Вместо стартера в схему может включаться обыкновенная кнопка от электрозвонка. В данном случае напряжение будет подаваться путем удерживания кнопки звонка в нажатом положении. Кнопку нужно отпустить после зажигания светильника.

Подключение лампы с электромагнитным балластом

Порядок действия схемы с балластом электромагнитного типа выглядит следующим образом:

  • после включения в сеть, дроссель начинает накапливать электромагнитную энергию;
  • через стартерные контакты обеспечивается поступление электричества;
  • ток устремляется по вольфрамовым нитям нагрева электродов;
  • электроды и стартер нагреваются;
  • происходит размыкание контактов стартера;
  • аккумулированная дросселем энергия высвобождается;
  • величина напряжения на электродах меняется;
  • люминесцентная лампа дает свет.

В целях повышения показателя полезного действия и уменьшения помех, возникающих в процессе включения лампы, схема комплектуется двумя конденсаторами. Один из них (меньший) размещается внутри стартера. Его главная функция заключается в погашении искр и улучшении неонового импульса.

Схема подключения одной люминесцентной лампы через стартер

Среди ключевых преимуществ схемы с балластом электромагнитного типа можно выделить:

  • надежность, проверенную временем;
  • простоту;
  • доступную стоимость.
  • Недостатков, как показывает практика, больше, чем преимуществ. Среди их числа нужно выделить:
  • внушительный вес осветительного прибора;
  • продолжительное время включения светильника (в среднем до 3 секунд);
  • низкую эффективность системы при эксплуатации на холоде;
  • сравнительно высокое потребление энергии;
  • шумную работу дросселя;
  • мерцание, негативно воздействующее на зрение.

Порядок подключения

Подсоединение лампы по рассмотренной схеме выполняется с задействованием стартеров. Далее будет рассмотрен пример установки одного светильника с включением в схему стартера модели S10. Это современное устройство имеет невозгораемый корпус и высококачественную конструкцию, что делает его лучшим в своей нише.

Главные задачи стартера сводятся к:

  • обеспечению включения лампы;
  • пробою газового промежутка. Для этого цепь разрывается после довольно длительного нагрева электродов лампы, что приводит к выбросу мощного импульса и непосредственно пробою.

Дроссель используется для выполнения таких задач:

  • ограничения величины тока в момент замыкания электродов;
  • генерации напряжения, достаточного для пробоя газов;
  • поддержания горения разряда на постоянном стабильном уровне.

В рассматриваемом примере подключается лампа на 40 Вт. При этом дроссель должен иметь аналогичную мощность. Мощность же используемого стартера равна 4-65 Вт.

Подключаем в соответствии с представленной схемой. Для этого делаем следующее.

Первый шаг

Параллельно подключаем стартер к штыревым боковым контактам на выходе люминесцентного светильника. Эти контакты представляют собой выводы нитей накаливания герметичной колбы.

Третий шаг

К питающим контактам подключаем конденсатор, опять-таки, параллельно. Благодаря конденсатору будет компенсироваться реактивная мощность и уменьшаться помехи в сети.

Принцип действия

Принцип действия люминесцентных ламп

Опишем кратко схему взаимодействия стартера, балласта и светильника:

  1. При подаче питания ток, проходя через ПРА, проходит через контакты стартера по вольфрамовым спиралям, раскаляя их и далее уходит в сторону нуля
  2. Стартер оснащается парой контактов: подвижным и неподвижным. При поступлении тока подвижный контакт (биметаллический), нагреваясь, изменяет свою форму и соединяется с первым
  3. При этом сила тока тут же значительно увеличивается до предела, ограничиваемого дросселем. Происходит разогревание электродов
  4. Пластина стартера, напротив, начинает остывать и рассоединяет контакты. В этот момент происходит резкий скачек напряжения и пробивка электронами газа. При превращении ртути в пар источник света переходит в рабочий режим
  5. Стартер в процессе уже не участвует – его контакты разомкнуты.


Многолетние цветы (ТОП-50 видов): садовый каталог для дачи с фото и названиями | Видео + Отзывы

Кратко об особенностях работы ламп

Строение люминесцентной лампы

Каждый из таких приборов является герметичной колбой, наполненной специальной смесью газов. При этом смесь рассчитана таким образом, чтобы на ионизацию газов уходило гораздо меньшее по сравнению с обыкновенными лампами накаливания количество энергии, что позволяет заметно экономить на освещении.

Чтобы люминесцентная лампа постоянно давала свет, в ней должен поддерживаться тлеющий разряд. Для обеспечения такового осуществляется подача требуемого напряжения на электроды лампочки. Главная проблема заключается в том, что разряд может появиться только при подаче напряжения, существенно превышающего рабочее. Однако и эту проблему производители ламп с успехом решили.

Люминесцентные лампы

Электроды установлены по обеим сторонам люминесцентной лампы. Они принимают напряжение, благодаря которому и поддерживается разряд. У каждого электрода есть по два контакта. С ними соединяется источник тока, благодаря чему обеспечивается прогревание окружающего электроды пространства.

Таким образом, люминесцентная лампа зажигается после прогрева ее электродов. Для этого они подвергаются воздействию высоковольтного импульса, и лишь затем в действие вступает рабочее напряжение, величина которого должна быть достаточной для поддержания разряда.

Сравнение ламп

Световой поток, лм Светодиодная лампа, Вт Контактная люминисцентная лампа, Вт Лампа накаливания, Вт
50 1 4 20
100 5 25
100-200 6/7 30/35
300 4 8/9 40
400 10 50
500 6 11 60
600 7/8 14 65

Под воздействием разряда газ в колбе начинает излучать ультрафиолетовый свет, невосприимчивый человеческим глазом. Чтобы свет стал видимым человеку, внутренняя поверхность колбы покрывается люминофором. Это вещество обеспечивает смещение частотного диапазона света в видимый спектр. Путем изменения состава люминофора, меняется и гамма цветовых температур, благодаря чему обеспечивается широкий ассортимент люминесцентных ламп.

Как подключить люминесцентную лампу

Лампы люминесцентного типа, в отличие от простых ламп накаливания, не могут просто включаться в электрическую сеть. Для появления дуги, как отмечалось, должны прогреться электроды и появиться импульсное напряжение. Эти условия обеспечиваются при помощи специальных балластов. Наибольшее распространение получили балласты электромагнитного и электронного типа.

Схема для последовательного подключения двух ламп

Люминесцентные лампы допускают последовательное включение двух осветительных устройств в одну цепь при наличии следующих условий:

  • использование двух идентичных источников света;
  • предназначенный для подобной схемы электромагнитный балласт;
  • дроссель, рассчитанный на удвоенную мощность.

Преимущество схемы с последовательным включением заключается в использовании только одного тяжелого дросселя, но при неисправности в одной из лампочек или стартер светильник оказывается полностью неработоспособным.

Современные ЭПРА допускают включение только согласно приведенной схеме, но много конструкций рассчитано на включение двух ламп. При этом в схеме организовано два независимых канала формирования напряжения, поэтому двойной электронный балласт обеспечивает работоспособность одной лампы при неисправности или отсутствии соседней.

Устройство

Конструкция люминесцентной лампы состоит из:

  • прозрачной вытянутой трубки;
  • двух цоколей с двумя электродами;
  • стартер, начинающий работать от розжига;
  • электромагнитный дроссель;
  • конденсатор от сети.

Колба лампочки производится из кварцевого стекла. В начале работы на производстве из колбы выкачивают воздух и создают вакуумную среду, а потом она наполняется смесью инертного газа с добавлением ртути. Последняя должна быть в газообразном состоянии, потому что внутри высокое давление.

Поверхность колбы изнутри покрывается фосфоресцирующим веществом, оно перерабатывает энергию ультрафиолетового света в видимый человеческому глазу луч.

К концам электродов лампочки подсоединяется переменное напряжение сети. Нити из вольфрама покрываются тяжелым металлом, который во время работы испускает электроны. В основном используются цезий, барий, талий. Дроссель похож на катушку, у которой высокая величина магнитной проницаемости.

Электрод

Наружной частью электрод спаивается с цоколем. Из сосуда начинают обильное откачивание всего воздуха с помощью штенгеля, который находится в одной из ножек c электродами. Далее начинается наполнение вакуумной среды инертными газами c добавками ртути.

На определенные виды электродов обязательно напыляют активирующее вещество, например оксид бария, талия или кальция.

Атом ртути

В люминесцентную лампу добавляют немного ртути, которая превращается в пар во время розжига разряда, и некоторую часть аргона, которая помогает повышению срока эксплуатации изделия и улучшению условий для оживления атомов ртути.

При включении устройства к сети подается электрический разряд, оживляющий работу паров ртути. Тонкая пленка люминофора активизируется под воздействием света паров ртути.

Стеклянная трубка

Трубка из стекла может иметь различный диаметр. Сила светового потока может быть разной, это зависит от мощности люминесцентной лампы. Для ее правильной работы необходим стартер дроссельного вида.

Внимание! Температура в трубке не должна быть свыше 55 градусов. Поэтому данную лампу нельзя применять в промышленных горячих цехах

Люминофор

Самой главной частью люминесцентного устройства будет слой люминофора. КПД люминофоров— соотношение величины излучаемых квантов к величине, поглощённых по большей степени, зависит от качества сырья, используемого при производстве люминофора.

Историческая справка

Газоразрядная колба появилась еще в 1856 году и называлась трубкой Гейслера. Использование высоковольтной катушки позволило возбудить в ней свечение газа зеленого цвета. Через несколько лет предложено было покрыть внутреннюю поверхность колбы люминофором.

Принцип работы

В начале работы появляются свободно перемещающиеся электроны. Это начинается во время включения рабочего переменного напряжения в зонах около вольфрамовых нитей внутри колбы.

Вольфрамовые нити из-за того, что покрыты пленкой из тяжёлых металлов по мере накаливания выполняют эмиссию электронов. Внешнего напряжения будет не хватать для получения электронного потока. Во время перемещения эти свободные частицы выталкивают электроны с краев атомов инертного газа (аргон). После этого они начинают также перемещаться хаотично.

Далее в итоге совместной деятельности стартера и электромагнитного дросселя получаются условия для повышения силы тока и получение тлеющего разряда аргона. Далее начинается световой поток.

Перемещающиеся атомы обладают необходимой кинетической энергией, которая нужна для перевода электронов паров ртути, которая есть в составе ЛЛ на более высокую орбиту. Получение яркого света получается в слое люминофора, который покрывает внутреннюю часть лампочки.

Нюансы подключения

Схемы включения ламп дневного света подразумевают наличие электромагнитного пускорегулирующего аппарата или дросселя (представляющего собой своеобразный стабилизатор) со стартером. Конечно, в наше время есть люминесцентные лампы без дросселя и стартера и даже приборы с улучшенной цветопередачей (ЛДЦ), но о них чуть позднее.

Итак, стартер выполняет следующую задачу: он обеспечивает в схеме короткое замыкание, разогревая и электроды, обеспечивая тем самым пробой, при помощи которого облегчается розжиг лампы. После того как электроды достаточно разогрелись, стартер обеспечивает разрыв цепи. А дроссель ограничивает ток во время замыкания, обеспечивает высоковольтный разряд для пробоя, зажигая и поддерживая стабильное горение лампы после запуска.

Оцените статью
Рейтинг автора
5
Материал подготовил
Андрей Измаилов
Наш эксперт
Написано статей
116
Добавить комментарий