Содержание
- 1 Фото китайских фонариков своими руками
- 2 Изготовление своими руками
- 3 Обратная связь в симисторных схемах регулирования
- 4 Варианты схем регулятора мощности паяльника
- 5 Схемы на основе симистора
- 6 Блоки управления
- 7 Преимущества и недостатки
- 8 Регуляторы для паяльника своими руками. Обзор способов монтажа
- 9 Регулятор мощности паяльника своими руками: проверенные рабочие схемы (6 шт)
- 10 Принцип работы регулятора на симисторе
- 11 Простой регулятор мощности на симисторе своими руками
- 12 Как избежать 3 частых ошибок при работе с симистором.
Фото китайских фонариков своими руками
Изготовление своими руками
Если нет возможности, а также желания приобретать регулятор заводского типа, то можно собрать его своими руками. Хотя регуляторы типа » tda1085 » зарекомендовали себя очень хорошо. Для этого нужно детально ознакомиться с теорией и приступить к практике. Очень популярны схемы симисторного исполнения, в частности регулятор оборотов асинхронного двигателя 220в (схема 5). Сделать его несложно. Он собирается на симисторе ВТ138, хорошо подходящем для этих целей.
Схема 5 — Простой регулятор оборотов на симисторе.
Этот регулятор может быть использован и для регулировки оборотов двигателя постоянного тока 12 вольт, так как является довольно простым и универсальным. Обороты регулируются благодаря изменению параметров Р1, определяющему фазу входящего сигнала, который открывает переход симистора.
Принцип работы прост. При запуске двигателя происходит его затормаживание, индуктивность изменятся в меньшую сторону и способствует увеличению U в цепи «R2—>P1—>C2». При разряде С2 симистор открывается в течение некоторого времени.
Читать также: Кронштейны для прокладки кабеля по стене
Существует еще одна схема. Она работает немного по-другому: путем обеспечения хода энергии обратного типа, которое является оптимально выгодным. В схему включен довольно мощный тиристор.
Схема 6 — Устройство тиристорного регулятора.
Схема состоит из генератора сигнала управления, усилителя, тиристора и участка цепи, выполняющего функции стабилизатора вращения ротора.
Наиболее универсальной схемой является регулятор на симисторе и динисторе (схема 7). Он способен плавно убавить скорость вращения вала, задать реверс двигателю (изменить направление вращения) и понизить пусковой ток.
Принцип работы схемы:
- С1 заряжается до U пробоя динистора D1 через R2.
- D1 при пробитии открывает переход симистора D2, который отвечает за управление нагрузкой.
Напряжение при нагрузке прямо пропорционально зависит от частотной составляющей при открытии D2, зависящего от R2. Схема применяется в пылесосах. Она содержит универсальное электронное управление, а также способность простого подключения питания 380 В. Все детали следует расположить на печатной плате, изготовленной по лазерно-утюжной технологии (ЛУТ). Подробно с этой технологии изготовления плат можно ознакомиться в интернете.
Таким образом, при выборе регулятора оборотов электродвигателя возможна покупка заводского или изготовление своими руками. Самодельный регулятор сделать достаточно просто, так как при понимании принципа действия устройства можно с легкостью собрать его. Кроме того, следует соблюдать правила безопасности при осуществлении монтажа деталей и при работе с электричеством.
Плавная работа двигателя, без рывков и скачков мощности – это залог его долговечности. Для контроля этих показателей используется регулятор оборотов электродвигателя на 220В, 12 В и 24 В, все эти частотники можно изготовить своими руками или купить уже готовый агрегат.
Обратная связь в симисторных схемах регулирования
Для управления мощностью (температурой) нагревательных элементов различных приборов, скоростями вращения двигателей и т.д. в последнее время, несмотря на большую стоимость, чем электромеханика, применяется регулятор мощности на симисторе. Необходимость использования дополнительного радиатора для такой схемы – это небольшая плата взамен отсутствию рисков искрения, долгому сроку безотказной работы, стабильности выдаваемых параметров.Такая схема регулирования распространена в приборах типа паяльников, электродрелей и т.д.
Ниже приведен пример еще одной схемы регулирования мощности на симисторе. Это схема для регулирования скорости двигателя промышленной швейной машины.
Схема собрана на симисторе VS1, выпрямительных вентилях VD1 и VD2, и переменном резисторе R3 в цепи управления. Особенностью и ключевой отличительной чертой такой схемы является обратная связь. Симистор, пропускающий ток в обоих направлениях – это лучшее решение для схем регулирования, где необходимо наличие такой обратной связи.
Сравнивая с устаревшими коммутационными технологиями, можно обозначить еще одно явное преимущество схем регулирования мощности на симисторах – это возможность обеспечения качественной обратной связи и соответственно корректировки работы по обратной связи.
Особенности и преимущества схемы:
- В данном случае реализована обратная связь по нагрузке, что позволяет усиливать обороты двигателя и обеспечивать плавную бесперебойную работу машины в случае возрастания нагрузочных усилий. При этом все операции выполняются схемой автоматически. Не возникает искрений или перегрева. Как видно из рисунка, теплоотвода не предусмотрено.
Данная схема – это регулирование активной мощности приборов. Не рекомендуется применение таких схем в системах регулирования интенсивности освещения. По ряду причин, осветительные приборы будут сильно мигать.
Коммутация симистора в данной схеме происходит строго в моменты перехода через «0» сетевого напряжения, поэтому можно заявлять о полном отсутствии помех со стороны регулятора.
Приводится в действие, то есть включается симистор от поступающего на управляющий электрод положительного импульса при положительном напряжении на аноде, либо от отрицательного импульса при отрицательном положении на катоде. Катод и анод, учитывая особенности двунаправленной работы симистора тут условные. в зависимости от работы в разных направлениях они будут меняться функциями.
В роли источника импульсов для управления симистором может быть применен двунаправленный динистор. Либо, из соображений удешевления схемы, можно подключить во встречно-параллельном направлении пару обыкновенных динисторов. Для обеспечения большей ширины диапазона регулирования малых напряжений оптимальным выбором станут динисторы типа КНР102А. Еще один вариант ключевого элемента – лавинный транзистор.
Регулирования активной и реактивной мощности имеют некоторые отличительные особенности. Управление индуктивной нагрузкой требует включения в схему RC-цепочки (параллельно симистору). Это позволит сдерживать скорость увеличения напряжения на аноде симистора.
Варианты схем регулятора мощности паяльника
Необходимые элементы для монтажа регулятора мощности паяльника своими руками
Тиристор
Симистор
Внешний вид резистора и способ отображения на схеме
Конденсатор
Диод
Диод — обозначение
Стабилитроны
Микроконтроллер
Схема регулятора мощности паяльника с выключателем и диодом
Схема с выключателем и диодом
- диод (1N4007);
- выключатель с кнопкой;
- кабель с вилкой (это может быть кабель паяльника или же удлинителя — если есть страх испортить паяльник);
- провода;
- флюс;
- припой;
- паяльник;
- нож.
Сборка двухступенчатого регулятора на весу:
- Зачистить и залудить провода. Залудить диод.
- Припаять провода к диоду. Удалить лишние концы диода. Надеть термоусадочные трубки, обработать нагревом. Можно также использовать электроизоляционную трубку — кембрик.
- Подготовить кабель с вилкой в том месте, где удобнее будет крепить выключатель. Разрезать изоляцию, перерезать один из находящихся внутри проводов. Часть изоляции и второй провод оставить целыми. Зачистить концы разрезанного провода.
- Расположить диод внутри выключателя: минус диода — к вилке, плюс — к выключателю.
- Скрутить концы разрезанного провода и проводов, подсоединённых к диоду. Диод должен находиться внутри разрыва.
- Провода можно спаять. Подключить к клеммам, затянуть винты.
- Собрать выключатель.
Регулятор мощности на тиристоре своими руками
Тиристорный регулятор
Схема с маломощным тиристором и световым индикатором
Тиристор | VS2 | КУ101Е |
Резистор | R6 | СП-04 / 47К |
Резистор | R4 | СП-04 / 47К |
Конденсатор | С2 | 22 мф |
Диод | VD4 | КД209 |
Диод | VD5 | КД209 |
Индикатор | VD6 | — |
Регулятор на тиристоре КУ202Н
Тиристор | VS1 | КУ202Н |
Резистор | R6 | 100 кОм |
Резистор | R1 | 3,3 кОм |
Резистор | R5 | 30 кОм |
Резистор | R3 | 2,2 кОм |
Резистор | R4 | 2,2 кОм |
Резистор переменный | R2 | 100 кОм |
Конденсатор | С1 | 0,1 мкФ |
Транзистор | VT1 | КТ315Б |
Транзистор | VT2 | КТ361Б |
Стабилитрон | VD1 | Д814В |
Диод выпрямительный | VD2 | 1N4004 или КД105В |
Сборка тиристорного (симисторного) регулятора мощности на печатной плате:
- Сделать монтажную схему — наметить удобное расположение всех деталей на плате. Если плата приобретается — монтажная схема идёт в комплекте.
- Подготовить детали и инструменты: печатную плату (её нужно сделать заранее согласно схеме или купить), радиодетали, кусачки, нож, провода, флюс, припой, паяльник.
- Разместить на плате детали согласно монтажной схеме.
- Откусить кусачками лишние концы деталей.
- Смазать флюсом и припаять каждую деталь — сначала резисторы с конденсаторами, потом — диоды, транзисторы, тиристор (симистор), динистор.
- Подготовить корпус для сборки.
- Зачистить, залудить провода, припаять к плате согласно монтажной схеме, установить плату в корпус. Заизолировать места соединения проводов.
- Проверить регулятор — подключить к лампе накаливания.
- Собрать устройство.
https://youtube.com/watch?v=4DG4_w2fe4E
Схема регулятора мощности паяльника с тиристором и диодным мостом
Схема с тиристором и диодным мостом
Резистор | R1 | 42 кОм |
Резистор | R2 | 2,4 кОм |
Конденсатор | C1 | 10 мк х 50 В |
Диоды | VD1-VD4 | КД209 |
Тиристор | VS1 | КУ202Н |
Регулятор мощности паяльника на симисторе
Конденсатор | C1 | 0,1 мкФ |
Резистор | R1 | 4,7 кОм |
Резистор | VR1 | 500 кОм |
Динистор | DIAC | DB3 |
Симистор | TRIAC | BT136–600E |
Диод | D1 | 1N4148/16 B |
Светодиод | LED | — |
Регулятор мощности на симисторе с диодным мостом
Схема регулятора на симисторе с диодным мостом
Регулятор на симисторе — вариант монтажа на плате
Регулятор с симистором и диодным мостом — образец
Регулятор мощности паяльника с симистором на микроконтроллере своими руками
Схема симисторного регулятора с микроконтроллером
Конденсатор | C1 | 0.47 мкФ |
Конденсатор | C2 | 1000 пФ |
Конденсатор | C3 | 220 В х 6.3 мкФ |
Резистор | R1 | 22 кОм |
Резистор | R2 | 22 кОм |
Резистор | R3 | 1 кОм |
Резистор | R4 | 1 кОм |
Резистор | R5 | 100 Ом |
Резистор | R6 | 47 Ом |
Резистор | R7 | 1 МОм |
Резистор | R8 | 430 кОм |
Резистор | R9 | 75 Ом |
Симистор | VS1 | BT136–600E |
Стабилитрон | VD2 | 1N4733A (5.1v) |
Диод | VD1 | 1N4007 |
Микроконтроллер | DD1 | PIC 16F628 |
Индикатор | HG1 | АЛС333Б |
Схемы на основе симистора
Если по каким-то причинам нет возможности приобрести готовый регулятор мощности, то его вполне можно сделать своими руками. Заранее необходимо определиться, для какого электроприбора он будет изготовлен.
Эта схема довольно проста в сборке и не требует большого количества деталей. Такой регулятор можно применить для регулировки не только температуры паяльника, но и обычных ламп накаливания и светодиодных. К этой схеме можно подключать различные дрели, болгарки, пылесосы, шлифмашинки, которые изначально шли без плавной регулировки скорости.
Вот такой регулятор напряжения 220в своими руками можно собрать из следующих деталей:
- R1 — резистор 20 кОм, мощностью 0,25 Вт.
- R2 — переменный резистор 400−500 кОм.
- R3 — 3 кОм, 0,25 Вт.
- R4—300 Ом, 0,5 Вт.
- C1 C2 — конденсаторы неполярные 0,05 Мкф.
- C3 — 0,1 Мкф, 400 в.
- DB3 — динистор.
- BT139−600 — симистор необходимо подобрать в зависимости от нагрузки которая будет подключен. Прибор, собранный по этой схеме, может регулировать ток величиной 18А.
- К симистору желательно применить радиатор, так как элемент довольно сильно греется.
Схема проверена и работает довольно стабильно при разных видах нагрузки.
Существует еще одна схема универсального регулятора мощности.
На вход схемы подается переменное напряжение 220 В, а на выходе уже 220 В постоянного тока. Эта схема имеет в своем арсенале уже больше деталей, соответственно и сложность сборки повышается. На выход схемы возможно подключить любой потребитель (постоянного тока). В большинстве домов и квартир люди стараются поставить энергосберегающие лампы. Не каждый регулятор справится с плавной регулировкой такой лампы, например, тиристорный регулятор использовать нежелательно. Эта схема позволяет беспрепятственно подключать эти лампы и делать из них своего рода ночники.
Особенность схемы заключается в том, что при включении ламп на минимум все бытовые приборы должны быть отключены от сети. После этого в счетчике сработает компенсатор, и диск медленно остановится, а свет будет продолжать гореть. Это возможность собрать симисторный регулятор мощности своими руками. Номиналы деталей нужных для сборки, можно увидеть на схеме.
Еще одна занимательная схема, которая позволяет подключить нагрузку до 5А и мощностью до 1000Вт.
Регулятор собран на базе симистора BT06−600. Принцип работы этой схемы заключается в открытии перехода симистора. Чем больше элемент открыт, тем больше мощность поступает на нагрузку. А также в схеме присутствует светодиод, который даст знать, работает устройство или нет. Перечень деталей, которые понадобятся для сборки аппарата:
- R1 — резистор 3.9 кОм и R2 — 500 кОм своеобразный делитель напряжения, который служит для зарядки конденсатора С1.
- конденсатор С1- 0,22 мкФ.
- динистор D1 — 1N4148.
- светодиод D2, служит для индикации работы устройства.
- динисторы D3 — DB4 U1 — BT06−600.
- клемы для подключения нагрузки P1, P2.
- резистор R3 — 22кОм и мощностью 2 вт
- конденсатор C2 — 0.22мкФ рассчитан на напряжение не меньше 400 В.
Симисторы и тиристоры с успехом используются в качестве пускателей. Иногда необходимо запустить очень мощные тэны, управлять включением сварочного мощного оборудования, где сила тока достигает 300−400 А. Механическое включение и выключение с помощью контакторов уступает симисторному пускателю из-за быстрого износа контакторов, к тому же при механическом включении возникает дуга, которая также пагубно влияет на контакторы. Поэтому целесообразным будет использовать симисторы для этих целей. Вот одна из схем.
Все номиналы и перечень деталей указаны на Рис. 4. Достоинством этой схемы является полная гальваническая развязка от сети, что обеспечит безопасность в случае повреждения.
Блоки управления
Следующим видом паяльников являются уже более сложные устройства с блоком питания, в которых регулирование происходит при помощи блока из полупроводников и микросхем. Такой блок компактен и может находиться в корпусе рукоятки паяльника, что очень удобно.
Регулятор также может находиться на рукоятке. При достаточно скромной цене это вполне приемлемый вариант, позволяющий производить качественную пайку.
Еще одной разновидностью паяльников с регулировкой являются инструменты с внешним блоком питания. Благодаря наличию этих блоков возможна работа прибора на выпрямленном постоянном токе со стабильными значениями напряжения.
Недостатком моделей можно посчитать громоздкость, низкую мобильность, но если принять во внимание, что качественный монтаж можно произвести только в оборудованной мастерской, а не «на коленке», как принято говорить в таких случаях, то можно закрыть на это глаза. Наиболее точной регулировки и настройки можно добиться только при помощи , где в помощь обычному паяльнику предусмотрен фен, которым предварительно подогревают плату или припой. Наиболее точной регулировки и настройки можно добиться только при помощи , где в помощь обычному паяльнику предусмотрен фен, которым предварительно подогревают плату или припой
Наиболее точной регулировки и настройки можно добиться только при помощи , где в помощь обычному паяльнику предусмотрен фен, которым предварительно подогревают плату или припой.
Преимущества и недостатки
Паяльник с регулятором температуры имеет ряд плюсов и минусов.
К преимуществам такого инструмента относятся:
- Возможность регулировки температуры;
- Полное исключение риска перегрева и порчи чувствительных к высоким температурам радиодеталей;
- Быстрый нагрев;
- Доступная цена;
- Наличие в комплекте к устройству комплекта несгораемых жал – предварительно залуженных насадок, имеющих специальное необгарающее покрытие.
Из недостатков таких устройств можно выделить:
- Низкую ремонтопригодность;
- Высокую стоимость качественных полупрофессиональных и профессиональных моделей;
- Хрупкость нагревательного элемента из керамики.
Также недостатком дешевых моделей является поддельный керамический нагреватель, представляющий собой полую керамическую трубку, внутри которой расположен асбестовый стержень с намотанной тонкой нихромовой проволокой. Из-за маленькой толщины проволоки такие нагреватели очень быстро выходят из строя по причине термострикции – разрыва проволоки при ее остывании.
Регуляторы для паяльника своими руками. Обзор способов монтажа
В зависимости от вида и набора радиодеталей, регуляторы мощности для паяльника могут быть разных размеров, с разным функционалом. Можно собрать как небольшое простое устройство, в котором нагрев прекращается и возобновляется нажатием кнопки, так и габаритное, с цифровым индикатором и программным управлением.
Возможные виды монтажа в корпус: вилка, розетка, станция
В зависимости от мощности и задач регулятор можно поместить в несколько видов корпуса. Самый простой и довольной удобный — вилка. Для этого можно использовать зарядное устройство для сотового телефона или корпус любого адаптера. Останется только найти ручку и поместить её в стенке корпуса. Если корпус паяльника позволяет (там достаточно места), можно разместить плату с деталями в нём.
Такой регулятор мощности всегда находится вместе с паяльником — его нельзя забыть или потерять
Другой вид корпуса для несложных регуляторов — розетка. Она может быть как одинарной, так и представлять собой тройник-удлинитель. В последнем можно очень удобно поставить ручку со шкалой.
Корпус удобен для размещения платы с деталями
На месте одной и розеток стоит ручка переключателя со шкалой
Вариантов монтажа регулятора с индикатором напряжения тоже может быть несколько. Все зависит от сообразительности радиолюбителя и фантазии. Это может быть как очевидный вариант — удлинитель с вмонтированным туда индикатором, так и оригинальные решения.
Счетчик на корпусе дает точные цифры для работ, где важна строго определённая температура
Плата закреплена внутри винтами
Собрать можно даже подобие паяльной станции, установить на ней подставку для паяльника (её можно купить отдельно). При монтаже нельзя забывать о правилах безопасности. Детали нужно изолировать — например, термоусадочной трубкой.
Регулятор мощности паяльника своими руками: проверенные рабочие схемы (6 шт)
Не всем нравится покупать неизвестно что. А некоторым приятнее сделать регулятор мощности паяльника своими руками, ведь это тоже опыт. Большинство схем собирается на симисторах и тиристорах, сейчас их найти проще чем транзисторы. Работать с ними тоже проще, так как они либо открыты, либо закрыты, что позволяет делать схемы проще.
Корпус подберите любой
Простые схемы на тиристоре
При выборе схемы регулятора мощности для паяльника важны две вещи: мощность и доступность деталей. Представленный ниже регулятор мощности паяльника собран на широко распространённых деталях, которые найти не проблема. Максимальный ток — 10 А, что более чем достаточно для выполнения работ любого рода и для паяльников мощностью до 100 Вт. Тиристор в данной схеме использован КУ202н
Обратите внимание на подключение моста. Есть много схем с ошибкой в подключении. Этот вариант рабочий
Проверен не раз
Этот вариант рабочий. Проверен не раз.
Схема регулятора температуры для паяльника на тиристоре
При сборке схемы тиристор обязательно ставим на радиатор, чем он больше тем лучше. Схема проста, но когда она включена, создаёт помехи. Радио рядом не послушаешь и, чтобы убрать помехи, параллельно нагрузке подключаем конденсатор на 200 пФ, а последовательно дроссель. Параметры дросселя подбираются в зависимости от регулируемой нагрузки, но так как паяльники обычно не более чем на 80-100 Вт, то и дроссель можно сделать на 100 Вт. Для этого понадобится ферритовое кольцо наружным диаметром 20 мм, на которое намотано около 100 витков проводом сечением 0,4 мм².
Ещё один недостаток переведённой выше схемы — паяльник ощутимо «зудит». Иногда с этим мириться можно, иногда нет. Для устранения этого явления можно подобрав параметры конденсатора C1 так чтобы при выставленном на максимум переменном резисторе, подключённая лампа еле-еле светилась.
На других элементах но тоже без помех
Приведенный выше регулятор можно использовать для любой нагрузки. Приведем еще один аналог,но с использованием другой элементной базы. Регулировать можно не только мощность/температуру паяльника, но и любую другую нагрузку с небольшой индуктивной составляющей.
Видоизмененная схема для регулирования мощности паяльника и любой другой нагрузки с устраненным эффектом пульсации
Пульсация тут есть, но ее частота высока и она не будет восприниматься нашим зрением. Так что можно использовать не только как диммер для паяльника, но и для регулирования света от обычной лампы накаливания. Нужен ли диодный мост для регулировки мощности нагрева паяльника? Он не помешает, но необходимости в нем нет.
На тиристоре с высокой чувствительностью
Данная схема позволяет плавно изменять температуру паяльника от 50% до 100%. Есть два индикатора — питания и мощности. Светодиод наличия питания горит всегда во включенном состоянии, но при 75% мощности свечение более яркое. Индикатор мощности меняет интенсивность свечения в зависимости от режима работы.
Регулятор мощности для паяльника без помех
Чтобы регулятор поместился в корпус от зарядного устройства мобильного телефона, сопротивления используют СМД типа (1206). Все резисторы установлены на плате, кроме R 10. Некоторые могут быть составными (из последовательно соединенных резисторов собираем нужный номинал).
Для нормальной работы схемы требуется чувствительный тиристор (с малым током управления) и низким током удержания состояния (порядка 1 мА). Например, КТ503 (рассчитан на напряжение 400 В, Ток управления 1 мА). Остальная элементная база указана на схеме.
Если собрали, но напряжение не регулируется
Если собранный регулятор ничего не регулирует — не меняется температура паяльника — дело в тиристоре. Схема, вроде, работает, а ничего не происходит. Причина — тиристор с низкой чувствительностью. Токи, которые протекают в схеме, недостаточны для открытия. В таком случае стоит поставить аналог с более высокой чувствительностью (токи управления более низкие).
Один из вариантов корпуса, в который можно спрятать самодельный регулятор мощности для паяльника
Еще может регулятор работать, но паяльник начинает «зудеть». Решается такая проблема установкой дросселя на выходе (перед паяльником). Емкость надо подбирать — зависит от паяльника. Второй вариант решения — аналоговая схема управления, а это уже другая схема.
Ну, и при проблемах с работой ищите либо неисправные детали, либо неправильно подобранные компоненты. Обычно проблема в этом.
Принцип работы регулятора на симисторе
Напомним, что симистором принято называть модификацию тиристора, играющего роль полупроводникового ключа с нелинейной характеристикой. Его основное отличие от базового прибора заключается в двухсторонней проводимости при переходе в «открытый» режим работы, при подаче тока на управляющий электрод. Благодаря этому свойству симисторы не зависят от полярности напряжения, что позволяет их эффективно использовать в цепях с переменным напряжением.
Помимо приобретенной особенности, данные приборы обладают важным свойством базового элемента – возможностью сохранения проводимости при отключении управляющего электрода. При этом «закрытие» полупроводникового ключа происходит в момент отсутствия разности потенциалов между основными выводами прибора. То есть тогда, когда переменное напряжение переходит точку нуля.
Дополнительным бонусом от такого перехода в «закрытое» состояние является уменьшение числа помех на этой фазе работы
Обратим внимание, что не создающий помех регулятор может быть создан под управлением транзисторов
Благодаря перечисленным выше свойствам, можно управлять мощностью нагрузки путем фазового управления. То есть, симистор открывается каждый полупериод и закрывается при переходе через ноль. Время задержки включения «открытого» режима как бы отрезает часть полупериода, в результате форма выходного сигнала будет пилообразной.
При этом амплитуда сигнала будет оставаться прежней, именно поэтому такие устройства неправильно называть регуляторами напряжения.
Простой регулятор мощности на симисторе своими руками
В завершении статьи приведем пример простейшего регулятора мощности. В принципе, можно собрать любую из приведенных выше схем (наиболее упрощенный вариант был приведен на рисунке 2). Для этого прибора даже не обязательно делать печатную плату, устройство может быть собрано навесным монтажом. Пример такой реализации показан на рисунке ниже.
Самодельный регулятор мощности
Использовать данный регулятор можно в качестве диммера, а также управлять с его помощью мощными электронагревательными устройствами. Рекомендуем подобрать схему, в которой для управления используется полупроводниковый ключ с соответствующими току нагрузки характеристиками.
Как избежать 3 частых ошибок при работе с симистором.
- Буква, после кодового обозначения симистора говорит о его предельном рабочем напряжении: А – 100В, Б – 200В, В – 300В, Г – 400В. Поэтому не стоит брать прибор с буквой А и Б для регулировки 0-220 вольт — такой симистор выйдет из строя.
- Симистор как и любой другой полупроводниковый прибор сильно нагревается при работе, следует рассмотреть вариант установки радиатора или активной системы охлаждения.
- При использовании симистора в цепях нагрузок с большим потреблением тока, необходимо четко подбирать прибор под заявленную цель. Например, люстра, в которой установлено 5 лампочек по 100 ватт каждая будет потреблять суммарно ток величиной 2 ампера. Выбирая по каталогу необходимо смотреть на максимальный рабочий ток прибора. Так симистор МАС97А6 рассчитан всего на 0,4 ампера и не выдержит такой нагрузки, а МАС228А8 способен пропустить до 8 А и подойдет для этой нагрузки.