Химико-термическая обработка стали

Изотермический отжиг стали и металлов — ПЗТО

Изотермический отжиг — термическая обработка стали и один из видов отжига, в ходе которого металл нагревается до аустенитного состояния (как при полном отжиге) и ускоренно охлаждается до 660 — 680°С (ниже точки Аг1), далее при этом температурном режиме проходит изотермическая выдержка до полного превращения аустенита в равновесную перлитную структуру и последующее охлаждение на воздухе.

Назначение изотермического отжига

Изотермическому отжигу подвергают мелкие детали из легированной цементуемой стали (штамповки, сортовой прокат), особенно актуален данный вид термообработки для высокохромистых сталей с устойчивым аустенитом. Изотермический отжиг является лучшим и ускоренным способом снижения твердости стали и повышения ее пластичности для улучшения обрабатываемости резанием.

Особенности режима проведения и преимущества изотермического отжига металлов

Изотермический отжиг относится к отжигу 2 рода, целью которого является нагрев для получения равновесной мелкозернистой структуры, достаточно мягкой и пластичной, поддающейся дальнейшей обработке.

Отличительная особенность такого вида термообработки: превращение аустенита в ферритно-цементитную смесь протекает в условиях постоянных температур в отличие от других видов отжига, где аустенит распадается в условиях охлаждения и непрерывного снижения температуры. После распада аустенита и изотермической выдержки охлаждение можно проводить на воздухе, так как скорость охлаждения уже не имеет принципиального значения. Вследствие этого изотермический отжиг обладает существенными преимуществами:

  • сокращается длительность процесса
  • ферритно-перлитная структура получается более однородной

Нагрев до аустенитного состояния проводится в температурных границах, превышающих температуру Ас3 на 30 — 50°С. Далее температура снижается ниже точки Ас1 приблизительно на 150°С и проводится изотермическая выдержка. Для осуществления данных процессов наш завод применяет новейшие камерные печи, максимальная садка которых — 5000 кг. Нагрев осуществляется методами излучения и конвекции, проводится контроль атмосферы. Превращения на всех участках садки протекают равномерно и при одной температуре, что гарантирует равномерность структуры и твердости всей садки.

Высокая технологичность нашего оборудования, равномерное распределение температуры за счет обогрева с пяти сторон, девять температурных режимов и возможность компьютеризированного управления процессами позволяют добиться высоких стабильных результатов в ходе проведения изотермического отжига деталей.

Структурные изменения в металле после проведения изотермического отжига

В условиях нагрева стали до температуры, превышающей интервал превращения, последующего быстрого охлаждения ниже этого интервала, выдержки и охлаждения происходит рекристаллизация. Аустенитная структура, распадаясь, превращается в ферритную с частицами цементита, происходит образование перлитной структуры. За счет выравнивания температуры по сечению изделия превращения происходят равномерно по всему объему. Структура приобретает мелкозернистость и однородность, снимаются внутренние напряжения.

Наш завод занимает лидирующее в Пермском крае положение в сфере химико-термической обработки металлов. Специалистами завода применяются инновационные подходы и современные технологии, разрабатываются уникальные процессы с помощью собственной лаборатории. Проведение изотермического отжига на компьютеризированном оборудовании под управлением квалифицированного персонала позволяет добиться максимально высоких результатов, удовлетворяющих наиболее требовательных клиентов. На нашем заводе применяется индивидуальный подход к каждому заказу и готовность в случае необходимости работать в режиме «24 часа в сутки 7 дней в неделю».

pzto.pro

Общее определение и виды отжига

В процессе литья, ковки и прочих операций, применяемых для изготовления заготовок, металл приобретает неоднородную структуру, появляются внутренние напряжения.

Неоднородность химического состава отливок вызывает дефекты и для его устранения применяется процесс отжига. Принцип этого способа состоит в том, что заготовку или деталь нагревают до определенной температуры, а затем производится процесс медленного охлаждения.

Отжиг также подразделяется на несколько режимов:

  • отжиг 1-го рода – диффузионный, рекристаллизационный, уменьшающий напряжение металла;
  • отжиг 2-го рода – полный, неполный, изотермический.

Нагрев заготовки

Нагрев заготовки — ответственная операция. От правильности ее проведения зависят качество изделия, производительность труда. Необходимо знать, что в процессе нагрева металл меняет свою структуру, свойства и характеристику поверхностного слоя и в результате от взаимодействия металла с воздухом атмосферы, и на поверхности образуется окалина, толщина слоя окалины зависит от температуры и продолжительности нагрева, химического состава металла. Стали окисляются наиболее интенсивно при нагреве больше 900°С, при нагреве в 1000°С окисляемость увеличивается в 2 раза, а при 1200°С — в 5 раз.

Хромоникелевые стали называют жаростойкими потому, что они практически не окисляются.

Легированные стали образуют плотный, но не толстый слой окалины, который защищает металл от дальнейшего окисления и не растрескивается при ковке.

Углеродистые стали при нагреве теряют углерод с поверхностного слоя в 2-4 мм. Это грозит металлу уменьшением прочности, твердости стали и ухудшается закаливание. Особенно пагубно обезуглероживание для поковок небольших размеров с последующей закалкой.

Заготовки из углеродистой стали с сечением до 100 мм можно быстро нагревать и потому их кладут холодными, без предварительного прогрева, в печь, где температура 1300°С. Во избежание появлений трещин высоколегированные и высокоуглеродистые стали необходимо нагревать медленно.

При перегреве металл приобретает крупнозернистую структуру и его пластичность снижается. Поэтому необходимо обращаться к диаграмме «железо-углерод», где определены температуры для начала и конца ковки. Однако перегрев заготовки можно при необходимости исправить методом термической обработки, но на это требуется дополнительное время и энергия. Нагрев металла до еще большей температуры приводит к пережогу, от чего происходит нарушение связей между зернами и такой металл полностью разрушается при ковке.

Закаливаемость и прокаливаемость стали

Для закалки характерны следующие показатели – закаливаемость и прокаливаемость материала:

  • Закаливаемость определяет твердость, которую приобретает сталь после проведения закалки. Твердость имеет прямую зависимость от содержания углерода в обрабатываемом металле. Например, к материалу с содержанием углерода ниже 0,3% закалка не применяется ввиду ее неэффективности.
  • Прокаливаемость определяет глубину, на которую распространяется область закалки. Этот показатель зависит от химического состава стали, а также от скорости охлаждения. Чем быстрее происходит охлаждение металла, тем глубже прокаливается заготовка. Содержание углерода также имеет влияние на этот показатель – чем выше его содержание, тем больше степень прокаливания. Размер заготовки или детали являются еще одним фактором, определяющим глубину обработки – большим деталям требуется больше времени для остывания, следовательно, и прокаливание распространится на меньшую глубину.

Отпуск стали

Применяют, чтобы сгладить внутренние напряжения кристаллической решетки и уменьшить жесткость металлов, а также для повышения ударной вязкости закаленных изделий. Выделяют:

  • высокий;
  • средний;
  • низкий отпуск.

Высокий отпуск осуществляют при температуре 500-650°С с плавным охлаждением. При этом сталь приобретает структуру сорбита, что обеспечивает устранение внутренних напряжений. Этому типу отпуска подвергаются конструкционные, углеродистые и легированные стали, из которых изготавливают валы, шестерни и другие. Характеристики сталей имеют большую прочность, пластичность и вязкость при их достаточной твердости.

Средний отпуск проводят при температуре 350-450°С, определенное время выдерживают и охлаждают. При таком отпуске мартенсит превращается в троостит, твердость стали уменьшается примерно до 400 НВ, а вязкость значительно повышается. Применяют (после закалки) отпуск для обработки пружин, рессор, штампов и других изделий, работающих при умеренных ударных нагрузках.

Низкий отпуск осуществляют в интервале температур 150-250°С, выдерживают и охлаждают. При этом образуется структура отпущенного мартенсита. Поэтому внутренние напряжения в изделии уменьшаются, несколько повышается вязкость, и исчезает калильная хрупкость, а твердость практически не меняется. Применяют для режущих, а также измерительных инструментов, которые должны быть твердыми и не хрупкими, иметь высокую износостойкость, в том числе для цементируемых изделий.

Смягчающий гетерогенизирующий отжиг

Во многих сплавах гетерогенизация структуры при выделении избыточных фаз из матричного раствора, происходящая при медленном охлаждении с температуры отжига, приводит к разупрочнению, которое используют в разных целях.

Полный смягчающий отжиг применяют ко всем термически упрочняемым алюминиевым сплавам (типа дуралюмин, авиаль и др.).

Цель отжига — смягчить материал, сделать его пластичнее перед штамповкой, гибкой, отбортовкой и другими операциями холодной обработки давлением. Ускоренное охлаждение на воздухе горячекатаных рулонов с температуры горячей прокатки приводит к частичной закалке (подкалке). Гетерогенизирующий смягчающий отжиг рулонов, например дуралюмина, позволяет при последующей холодной прокатке повысить степень обжатия без промежуточных отжигов.

Гетерогенизирующий отжиг можно проводить, нагревая сплав до окончательного растворения избыточной фазы (выше t на рисунке , д) с последующим очень медленным охлаждением. Медленное охлаждение необходимо, чтобы наиболее полно снизить концентрацию твердого раствора и избежать выделения фазы в слишком дисперсной форме с малыми расстояниями между ее частицами. Чем ниже концентрация матричного раствора и больше расстояние между выделениями, тем больше разупрочнение при отжиге.

Для экономии времени более выгодно при отжиге недогревать сплав до t. Температуру нагрева выбирают так, чтобы за сравнительно короткое время выдержки была достигнута концентрация матричного раствора, близкая к равновесной, а вторая фаза скоагулировала. После этого проводят медленное охлаждение.

Большинство термически упрочняемых алюминиевых сплавов подвергают полному смягчающему отжигу при 380 — 420 °С в течение 10 — 60 мин с последующим охлаждением со скоростью не более 30 град/ч.

При полном отжиге, кроме основного гетерогенизирующего процесса, может проходить и рекристаллизация, вносящая свой вклад в разупрочнение. Например, это происходит тогда, когда из-за низкой температуры окончания горячей прокатки лист был наклепан. Однако режим отжига для полного смягчения выбирают, исходя из требований гетерогенизации структуры, предусматривая медленное охлаждение. Для чисто рекристаллизационного отжига однофазных сплавов скорость охлаждения не имеет значения.

Неполный (сокращенный) смягчающий отжиг термически упрочняемых алюминиевых сплавов проводят при температуре ниже температуры полного отжига. При этом уже во время выдержки концентрация матричного раствора получается настолько низкой, что можно использовать быстрое охлаждение на воздухе или в воде.

Из-за более низкой температуры сокращенного отжига время выдержки при этой температуре должно быть больше, чем при полном отжиге, однако общая продолжительность термообработки уменьшается из-за последующего быстрого охлаждения.

Влияние температуры отжига

Влияние температуры отжига после холодной прокатки на предел прочности дуралюмина Д16 при двух скоростях охлаждения (по данным В. А. Ливанова и С. М. Воронова):

1 — охлаждение с печью до 209 °С; 2 — охлаждение на воздухе которого из β-фазы более полно выделяется пластичная α-фаза.

На рисункепоказано, что для максимального разупрочнения дуралюмина Д16 температура отжига в случае охлаждения с печью должна быть около 380 — 400 °С, а в случае охлаждения на воздухе — около 350 — 370 °С. При более высоких температурах нагрева S-фаза и CuAl2 быстро переходят в алюминивый раствор и при последующем охлаждении на воздухе происходит подкалка, повышающая прочность.

Сокращенный смягчающий отжиг большинства алюминиевых сплавов проводят при 350 — 370 °С с выдержкой 2 — 4 ч и охлаждением на воздухе или в воде.

Смягчающий гетерогенизирующий отжиг применяют не только к алюминиевым сплавам. Если, например, (α + β)-латунь в результате ускоренного охлаждения из β-области после горячей обработки давлением имеет пониженную пластичность (из-за большого количества хрупкой β´-фазы), то этот недостаток можно устранить отжигом с медленным охлаждением, во время которого из β-фазы более полно выделяется пластичная α-фаза (смотрите диаграмму состояния на рисунке ).

«Теория термической обработки металлов»,И.И.Новиков

Особенности термообработки алюминиевых сплавов

Алюминий и его сплавы требуют особого подхода к термообработке для достижения определенной прочности и структуры материала. Очень часто применяют несколько методов термообработки. Обычно, после закалки следует старение. Но некоторые типы материалов могут подвергаться старению без закалки.

Такая возможность появляется после отливки, когда компоненты, при повышенной скорости охлаждения, могут придать металлу необходимую структуру и прочность. Это происходит во время литья при температуре около 180 градусов. При такой температуре повышается уровень прочности и твердости, а также снижается степень тягучести.

Отжиг необходим для придания однородной структуры алюминиевому сплаву. С помощью этого метода состав становиться более однородным, активизируется процесс диффузии и выравнивается размер базовых частиц. Также можно добиться снижения напряжения кристаллической решетки. Температура обработки подбирается индивидуально, исходя из особенностей сплава, необходимых конечных характеристик и структуры материала.

Состав и свойства алюминиевых сплавов, упрочняемых термической обработкой

Важным этапом отжига является охлаждение, которые можно проводить несколькими способами. Обычно проводят охлаждения в печи или на открытом воздухе. Также применяется поэтапное комбинированное охлаждение, сначала в печи, а потом на воздухе.

Закалка требуется для упрочнения материала путем перенасыщения твердого раствора. Этот метод основан на нагреве изделий температурам и быстром охлаждении. Это способствует полноценному растворению составных элементов в алюминии. Используется для обработки деформируемых алюминиевых сплавов.

Для использования этого способа нужно правильно рассчитать температуру обработки. Чем выше степень, тем меньше времени требуется на закалку. При этом стоит подобрать температуру так, чтобы она превышала значение, необходимое для растворимости компонентов, но была меньше границы расплава металла.

Методом старения достигается увеличение прочности алюминиевого сплава. Причем необязательно подвергать изделия искусственному старению, так как возможен процесс естественного старения.

В зависимости от типа старения изменяется скорость структурных изменений. Поэтому искусственное старение более предпочтительно, так как оно позволяет повысить производительность работ. Подбор температуры и времени обработки зависит от свойств материала и характеристик легирующих компонентов.

Правильное сочетание уровня нагрева и времени выдержки позволяет повысить прочность и пластичность. Такой процесс называется стабилизацией.

Назначение термообработки

Металлические изделия, которые используются ежедневно в любых отраслях народного хозяйства, должны отвечать высоким требованиям устойчивости к износу. Металл, как сырьё, нуждается в усилении нужных эксплуатационных свойств, которых можно добиться воздействием на него высокими температурами. Термическая обработка сплавов высокими температурами изменяет изначальную структуру вещества, перераспределяет составляющие его компоненты, преобразует размер и форму кристаллов. Всё это приводит к минимизации внутреннего напряжения металла и таким образом повышает его физико-механические свойства.

Общие сведения о термической обработке сплавов

В процессе изготовления металлических изделий, полуфабрикатов и готовых деталей из металлических сплавов их подвергают термическому воздействию. Такая обработка придает материалам нужные свойства:

  • прочность;
  • коррозионную стойкость;
  • устойчивость к износу.

По термообработкой в самом общем смысле понимают совокупность управляемых технологических процессов, при которых в сплавах под воздействием критических температур наблюдаются полезные физико-механические и структурные изменения. Химический состав исходного вещества при подобной обработке остается неизменным.

Изделия из металлов и их сплавов, которые используются в самых разных отраслях народного хозяйства, должны иметь определенные показатели устойчивости к износу и к воздействию неблагоприятных факторов среды.

Металлическое сырье, включая сплавы, часто нуждается в повышении полезных эксплуатационных качеств. Этого чаще всего можно добиться при помощи высоких температур. Термообработка сплавов способна вносить изменения в исходную структуру вещества. При этом компоненты сплава перераспределяются, преобразуются форма и размеры кристаллов. Эти изменения ведут к уменьшению внутреннего напряжения в материалах, к улучшению физических и механических характеристик металлов.

Полный отжиг

Технологию применяют для образования мелкозернистой структуры стальных изделий, изготовленных горячей штамповкой, ковкой, литьем. Стали после процедуры полного отжига становятся пластичными, мягкими, без внутренних напряжений. Внутренняя (кристаллическая) структура становится однородной, мелкозернистой, состоит из феррита и перлита. Полным отжигом сталь подготавливают к обработке резанием и к последующему закаливанию. Так обрабатывают преимущественно доэвтектоидные стали.

Термообработка стали проводится по следующему техпроцессу: изделия (заготовки) нагревают до температур, превышающих на 30-50°С так называемую критическую верхнюю точку (в материаловедении обозначаемую как Ac3), затем медленно охлаждают. Охлаждение до температуры 500-550°С происходит со следующей скоростью:

  • для углеродистых сталей – 150-200°С в час;
  • для легированных – 50-75°С в час.

Виды обработки стали: отжиг

Отжиг – это один из способов высокотемпературной обработки стали, с которым отлично справится установка ТВЧ. В основе его принципа лежит нагрев металла до заданной температуры, выдержка, а затем медленное охлаждение. Производится отжиг стали для того, чтобы выровнять структуру металла, улучшить пластичность, а также уменьшить напряжение металла, если перед отжигом производились какие-либо другие процессы термической обработки. Отжиг, как и другие виды термообработки стали, подразделяется на подтипы:

  1. Отжиг первого рода. Во время произведения данного вида термической обработки не происходит перекристаллизация, называемая фазовыми превращениями. Если данные превращения и произведутся, то на итоговые результаты вовсе не скажутся. Производиться отжиг первого рода может при температуре, которая будет ниже или выше температуры фазовых превращений.
  2. Диффузионный отжиг. По-другому называется гомогенизацией. Во время произведения данного вида отжига происходит длительная выдержка изделия в среде, имеющей температуру выше 950 градусов. Диффузионный отжиг позволяет устранить или уменьшить химическую неоднородность стали, которая негативно сказывается на металле, снижая его пластичность и повышая хрупкость. Время выдержки изделия при произведении гомогенизации определятся исходя из параметров и марки стали, однако колеблется в пределах 50-100 часов.
  3. Отжиг второго рода. Во время произведения отжига второго рода сталь нагревается до температуры, которая будет выше точек АС1 или АС3 (смотрите изображение 1), затем происходит выдержка и медленное охлаждение. В результате медленного охлаждения фазовые превращения внутри металла приводят к получению почти равновесного состояния структуры металла.
  4. Полный отжиг. Еще данный тип отжига называют высоким. Производится он при нагреве металла под температурой, которая будет на 30-50 градусов ниже, чем верхняя критическая точка АС3, также изделие выдерживается при этой температуре, а затем медленно охлаждается вместе с установкой. Полный отжиг позволяет произвести полную перекристаллизацию металла, получив перлитную структуру.
  5. Неполный отжиг. До термической обработки сталь имеет слишком высокую твердость и тяжело поддается обработке. Внутри структуры имеется напряжение металла. Неполный отжиг применяется для устранения этого недостатка в виде уменьшения твердости металла. При неполном отжиге сталь нагревают, придерживаясь интервала температур между точкам АС1 и АС3. После произведения неполного отжига металл полностью избавляется от внутреннего напряжения, а сталь становится более податливой.
  6. Сфероидизирующий отжиг. Высокоуглеродистая заэвтектоидная сталь, обладающая структурой пластинчатого перлита очень плохо поддается обработке при помощи режущих инструментов, поэтому должен быть произведен сфероидизирующий отжиг для изменения структуры на зернистый перлит. Для это металл нагревают ниже точки АС1, выдерживают при этой температуре несколько часов, а затем остужают. На изображении 2 вы можете заметить схему отжига на зернистый перлит.
  7. Изометрический отжиг. Производится для получения ферритно-перлитовой смеси из аустенита при постоянной температуре. Изометрический отжиг предусматривает нагрев стали на 30-50 градусов выше точек АС3 или АСm, выдержку при соблюдении этой температуры и дальнейшее охлаждение до температуры перлитного превращения, которая как правило равняется 620-680 градусов, а затем снова выдерживают до конечного превращения аустенита в перлит.
  8. Рекристализационный отжиг. По-другому называется разупрочняющим отжигом. Рекристализационный отжиг производится в отношении изделий, которые были подвержены наклепу металла, и кристаллическая решетка которых исказилась. Разупрочняющий отжиг производится при температуре ниже точки АС1, то есть 630-650 градусов.
  9. Светлый отжиг. Производится для того, чтобы сохранить блестящую и чистую поверхность стальных листов, лент, прутков и т.п.

Как видите, существует немало видов отжига, позволяющих добиться нужных изменений в структуре металла. Установка ТВЧ способна с высокой точностью и хорошим качеством производить отжиг стали, приводя ее структуру в нужное состояние.

В чем заключается процесс отпуска стали?

Отпуск – это вид завершающей стадии термической отделки стали, во время которого происходит окончательное формирование структуры материала. Процесс отпуска состоит из нагрева до температуры ниже критической точки, за которым следует охлаждение.

Сам процесс подразделяется на три вида:

  • Низкий отпуск – происходит при температурном режиме 150–250˚C. При протекании процесса низкого отпуска происходит уменьшение внутренних напряжений и хрупкости металла, а вязкость стали немного повышается. Твердость при этом остается практически неизмененной.
  • Средний отпуск – характеризуется тем, что процесс проходит при температуре от 350 до 450 ˚C. Отличие от других видов отпуска состоит в том, что твердость детали уменьшается, а вязкость значительно увеличивается. Используется для обработки деталей, которые при эксплуатации испытывают умеренные ударные нагрузки.
  • Высокий отпуск – производится при соблюдении температурного интервала от 500 до 650˚C, с последующим постепенным охлаждением. Внутренние напряжения материала при этом практически устраняются. Прочность и пластичность при этом виде обработки имеют высокие характеристики в сочетании с достаточной твердостью металла. Высокий отпуск применяется для углеродистых и легированных видов заготовок, предназначенных для изготовления валов, шестерней.

Оцените статью
Рейтинг автора
5
Материал подготовил
Андрей Измаилов
Наш эксперт
Написано статей
116
Добавить комментарий