Твердость по шору

Насколько твердыми бывают основные металлы

Большинство материалов уже обладают определенными характеристиками, их давно измерили и записали в таблицы, при этом в сводках обозначены как исходные значения необработанного железа, так и после различных типов термо- и холодной металлообработки. Но при добавлении нестандартных и новых добавок, проведенных процедур необходимо заново измерять данный показатель. Но если вы сталкиваетесь со стандартными сплавами, то следует посмотреть в подготовленные списки.

Цветмет

Они более мягкие, чем черные, потому что в них нет твердых включений, а также их не подвергают закалке и прочим методам термообработки.

Титан составляет исключение. Приведем технологию, используемую Бриннелем:

Материал Особенности В нв
Медь Имеет высокую пластичность и низкую прочность. если добавляются специальные примеси, получаются новые марки, тогда показатель может увеличиваться. 35
Латунь Это двойной или многокомпонентный состав, который включает медь. но она более надежная, дополнительно включены цинк или олово. 42 – 60
Алюминий Может быть мягким или твердым, с увеличенной или уменьшенной пластичностью. 15 – 20
Дюралюминий Современный, легкий, активно применяется в авиастроении. есть добавки – медь, магний, марганец. 70
Титан Очень крепкий цветмет. 160

Черные металлы

Это железо и стали, ферросплавы и чугуны. Иногда к этой категории относят ванадий, марганец. Общая характеристика:

  • Способ получения – обработка железной руды.
  • Увеличенная прочность.
  • Невосприимчивость к механическим воздействиям.
  • Высокая износостойкость.
  • Хорошая свариваемость.
  • Невысокая стоимость.

Поэтому железо активно применяют. Нецелесообразно приводить полный список всех марок, поэтому только основные:

  • Чугун – 220 НВ.
  • Инструментальные стальные сплавы – до 700 НВ, из нее делаются режущие инструменты.
  • Нержавейка – до 250 НВ.

Твёрдость по Шору: методика и оборудование

Твёрдость по Шору (НS) устанавливается после удара по этой поверхности стальным бойком. Она является функцией величины отскока бойка.

Все предыдущие способы измерения твёрдости отличаются одним недостатком – на поверхности исследуемой детали остаётся отпечаток. Иногда это не даёт возможность вновь установить деталь в узел или конструкцию. Метод Шора позволяет определять твёрдость изделия HS без деформации  его поверхности.

Установка определения твердости по Шёру: 1 — Боек во взведённом состоянии. 2 — Образец испытаний. 3 — Направляющая труба. 4 — Положение отскочившего бойка

Способ Шора относится к динамическим, и заключается в следующем. К измеряемой поверхности (она может быть вертикальной или горизонтальной) подводится портативный твердомер Шора, чаще называемый склероскопом. Если материал – мягкий, то величина отскока будет меньше, поскольку энергия удара будет поглощаться поверхностью детали. Наоборот, если деталь – твёрдая, то вся энергия перейдёт в работу упругого отскока.

Рабочим органом склероскопа Шора является стальной боёк с алмазным наконечником. Сравнивая расстояние, на которое возвратился боёк после удара. Можно установить твёрдость испытуемой детали.

Диапазон измерений твёрдости по Шору составляет 30…140 НS, при этом твёрдости закаленной высокоуглеродистой стали соответствует значение 100 НS. Склероскоп Шора  не повреждает поверхность изделия, а потому может использоваться в тех случаях, когда необходимо оценить твёрдость детали, находящейся в составе какого-либо действующего узла. Этим обеспечивается предупреждающая оперативная диагностика механизма или металлоконструкции.

Метод Шора прост в применении, отличается быстротой оценки твёрдости, возможностью повторного использования прибора на той же детали. Однако имеются и ограничения:

  • Параметр НS не стандартизирован (хотя в справочниках имеются пересчётные таблицы и графики для перевода единиц твёрдости по Шору в единицы HV, HR или  НB);
  • Высота отскока бойка зависит от модуля Юнга материала детали, а потому сопоставимость единиц твёрдости по Шору для разных материалов невозможна;
  • Поскольку критерием твёрдости НS является величина отскока бойка, то рассматриваемый параметр имеет лишь сравнительное значение;
  • Точность измерений на склероскопе Шора ниже, чем на твердомерах, которые были рассмотрены ранее.

Иные методы

Кроме перечисленных методов для оценки твёрдости ограниченно применяются также способ Мооса (царапанием сапфировой иглой по поверхности образца), пластико-динамический способ Польди и ряд других. Необходимо отметить, что для определения твёрдости тонких поверхностных слоёв широко применяют метод микротвёрдости с использованием прибора ПМТ-3. По сути, это способ Виккерса, модернизированный под малые толщины измеряемых поверхностей.

Перевод единиц твёрдости

Перевод единиц определённой разными способами, можно выполнить с помощью следующей таблицы.

HB HRA HRC HV HS
688 84,5 65 940 96
660 83 63 867 93
627 82 61 800 90
611 81 59 756 86
588 80,5 58 704 83
569 80 57 682 81
555 79,5 56 653 79,5
547 79 55 635 77,5
534 78,5 54 618 76,5
518 78 53 594 74,5
507 77 52 578 73,5
500 76 51 563 71,5
482 76 49 542 70,5
470 76 49 521 67,5
457 75 48 503 66
445 74 47 450 64,5
435 73 46 474 63,5
426 73 45 461 61,5
415 73 44 442 59,5
402 72 43 420 56,5
393 72 42 417 56,5
383 71 41 401 55
373 70,5 40 389 53,5
362 70 39 378 52,5
350 69 38 362 50
341 69 37 351 49
330 68 36 343 48,5
321 68 35 330 46,5
311 67 34 319 44
302 67 33 307 43
297 66,5 32 302 42,5
288 66 31 294 41
282 66 30 288 39,5
275 65 29 280 39,5
266 65 28 274 39
260 64 27 262 37
253 64 26 255 36,5
245 63 25 246 35,5
240 62,5 24 241 34,5
232 62 23 233 33,5
228 62 22 229 32,5
222 61 21 222 32
219 61 20 222 31,5

Промежуточные данные получаются интерполяцией.

Методы измерения твердости

Все методы определения твердости металлов используют механическое воздействие на испытуемый образец – вдавливание индентора. Но при этом не происходит разрушение образца.

Метод определения твердости по Бринеллю был первым, стандартизованным в материаловедении. Принцип испытания образцов описан выше. На него действует ГОСТ 9012. Но можно вычислить значение по формуле, если точно измерить отпечаток на образце:

HB=2P/(πD*√(D2-d2),

  • гдеР – прикладываемая нагрузка, кгс;
  • D – окружность шарика, мм;
  • d – окружность отпечатка, мм.Шарик подбирается относительно толщины образца. Нагрузку высчитывают предварительно из принятых норм для соответствующих материалов:сплавы из железа — 30D2;медь и ее сплавы — 10D2;баббиты, свинцовые бронзы — 2,5D2.

Условное изображение принципа испытания

Схематически метод исследования по Роквеллу изображается следующим образом согласно ГОСТ 9013.

Метод измерения твердости по Роквеллу

Итоговая приложенная нагрузка равна сумме первоначальной и необходимой для испытания. Индикатор прибора показывает разницу глубины проникновения между первоначальной нагрузкой и испытуемой h –h

Метод Виккерса регламентирован ГОСТом 2999. Схематически он изображается следующим образом.

Метод Виккерса

Математическая формула для расчета:HV=0.189*P/d2 МПаHV=1,854*P/d2 кгс/мм2Прикладываемая нагрузка варьируется от 9,8 Н (1 кгс) до 980 Н (100 кгс). Значения определяются по таблицам относительно измеренного отпечатка d.

Метод Шора

Метод считается эмпирическим и имеет большой разброс показаний. Но прибор имеет простую конструкцию и его можно использовать при измерении крупногабаритных и криволинейных деталей.

Измерить твердость по Моосу металлов и сплавов можно царапанием. Моос в свое время предложил делать царапины более твердым минералом по поверхности предмета. Он разложил известные минералы по твердости на 10 позиций. Первую занимает тальк, а последнюю алмаз.

После измерения по одной методике перевод в другую систему весьма условен. Четкие значения существуют только в соотношении твердости по Бринеллю и Роквеллу, так как машиностроительные предприятия их широко применяют. Зависимость можно проследить при изменении диаметра шарика.

d, мм HB HRA HRC HRB
2,3 712 85,1 66,4
2,5 601 81,1 59,3
3,0 415 72,6 43,8
3,5 302 66,7 32,5
4,0 229 61,8 22 98,2
5,0 143 77,4
5,2 131 72,4

Как видно из таблицы, увеличение диаметра шарика значительно снижает показания прибора. Поэтому на машиностроительных предприятиях предпочитают пользоваться измерительными приборами с однотипным размером индентора.

Твёрдость по Роквеллу: методика и оборудование

Число твёрдости по Роквеллу (НR)  — условная величина, которая зависит от глубины вдавливания в образец стального шарика, либо алмазного конуса.

Условия проведения испытания  регламентированы ГОСТ 9013, и включают в себя:

  • Предварительное нагружение изделия, в ходе которого ликвидируется влияние всех поверхностных факторов: шероховатости, температуры, скорости внедрения индентора и др.;
  • Нагружение основным усилием, при котором и выполняется отсчёт.
  • Снятие загрузки.

В отличие от предыдущих методов, твёрдость по Роквеллу принимается по одной из трёх шкал:

  • Шкалы А (обозначение твёрдости НRA, в качестве индентора используется алмазный конус), которая используется для весьма твёрдых высокоуглеродистых легированных инструментальных сталей и твёрдых сплавов. Диапазон измерений 60…80 HRA;
  • Шкалы В (обозначение твёрдости НRВ, в качестве индентора используется стальной закалённый шарик), которая используется для сталей средней твёрдости и сплавов цветных металлов. Диапазон измерений 35…100 HRВ;
  • Шкалы С (обозначение твёрдости НRС, в качестве индентора используется алмазный конус), которая испольуется для сталей средней твёрдости. Диапазон измерений 20…90 HRС.

Кроме того, для специфических условий измерения твёрдости (например, для холоднокатаных тонколистовых сталей) применяется группа методов СуперРоквелл (шкалы HRN и HRT).

Как и в предыдущем случае, твердомеры Роквелла — типа ТК (Твёрдость Конусом) могут быть стационарными и переносными. Стационарные твердомеры управляются электромеханическим или гидравлическим приводом. Замеры твёрдости по Роквеллу отличаются большей сложностью, что обуславливается необходимостью задать сначала первичную, а затем — вторичную скорость  перемещения индентора.

В отличие от индентора на приборе Виккерса, в твердомерах Роквелла алмазный наконечник имеет форму конуса, поэтому точность измерения размеров отпечатка здесь несколько хуже.

Внутреннее исследование трупа

Внутреннее исследование трупа и его частей предусматривает обязательное вскрытие полости черепа, грудной и брюшной полостей с извлечением и исследованием всех внутренних органов.

Конкретный способ вскрытия трупа, последовательность и методику исследования полостей, внутренних органов, мягких тканей и скелета определяет эксперт, руководствуясь выявленными повреждениями, патологическими изменениями, имеющимися у него сведениями об обстоятельствах дела и поставленными вопросами.

При внутреннем исследовании трупа и его частей целесообразно придерживаться системного порядка при исследовании и оформлении результатов секции трупа (центральная нервная система, сердечно-сосудистая система и т.д.)

Повреждения, причиненные в процессе проведения экспертного исследования трупа и его частей (переломы ребер, хрящей гортани, костей черепа и т.п.), в обязательном порядке должны быть зафиксированы письменно.

Метод Киари-Мареша

Основная статья: Метод вскрытия трупа Киари-Мареша

Внутренние органы вскрывают на месте в трупе и только после этого извлекаются для более детального осмотра, взвешивания, измерения.

Метод Лютелю

Основная статья: Метод вскрытия трупа по Лютелю

После эвисцерации каждый орган отрезается от комплекса и исследуется отдельно.

Метод Абрикосова А.И.

Основная статья: Метод вскрытия трупа по Абрикосову А.И.

Внутренние органы извлекаются и исследуются в виде пяти анатомо-топографических комплексов:

  • а) органы шеи с органами грудной клетки;
  • б) кишечник (тонкий и толстый);
  • в) селезенка;
  • г) печень с желудком, двенадцатиперстной кишкой и поджелудочной железой;
  • д) почки с надпочечниками, мочеточниками и органами малого таза.

Метод Шора Г.В.

Основная статья: Метод Шора

Внутренние органы извлекаются из трупа в едином органе-комплексе и исследуются разрезами в определенной последовательности, без отделения органов от комплекса Для судебно-медицинских исследований большинством авторов рекомендуются методы Шора и Абрикосова, как обеспечивающие достаточную полноту и всесторонность исследования каждого органа.

Метод Попова Н.В.

Внутренние органы выделяются в 4-х комплексах:

  1. Органы полости рта, шеи и груди.
  2. Тонкий и толстый кишечник без прямой кишки.
  3. Печень, желчный пузырь, поджелудочная железа, селезенка, желудок, 12-перстная кишка.
  4. Надпочечники, почки, мочеточники, мочевой пузырь, половые органы, прямая кишка.

АППАРАТУРА

Дюрометры
Шора типов А и D. В конструкции дюрометров входят следующие части:

4.1.
Опорная поверхность с отверстием диаметром от 2,5 до 3,5 мм, центр которого
находится на расстоянии не менее 6 мм от любого края опоры.

4.2.
Индентор в виде закаленного стального стержня диаметром 1,10 — 1,40 мм, форма и
размеры которого для дюрометров типа А показаны на черт. 1, а для дюрометров типа D — на черт. 2.

Черт. 1

Черт.
2

4.3.
Индикаторное устройство, показывающее степень выдвижения кончика индентора за
пределы опорной поверхности. Степень выдвижения может быть измерена
непосредственно в условных единицах в диапазоне от 0, для полного выдвижения
кончика индентора, равного 2,50 + 0,04 мм, до 100 при отсутствии какого-либо
выдвижения вообще, что происходит, например, в том случае, когда опорную
поверхность индентора плотно прижимают к стеклянной пластинке.

Примечание. Устройство может иметь
приспособление, показывающее первоначальную глубину вдавливания индентора в
момент приложения нагрузки, чтобы обеспечить максимальное показание при
использовании непрерывной записи (если требуется) (см. п. 8.1).

4.4.
Калиброванная пружина для приложения к индентору силы, рассчитанной согласно
одной из приведенных ниже формул:

а) F = 550 ± 75НА,

где F — прилагаемая
сила, мН;

НА — твердость, определенная
по дюрометру типа А;

б) F = 445НD,

где F — прилагаемая
сила, мН;

hD — твердость, определенная по дюрометру типа D (см.
приложение).

Твердость основных металлов и сплавов

Измерение значения твердости проводится на готовых деталях, отправляющихся на сборку. Контроль производится на соответствие чертежу и технологическому процессу. На все основные материалы уже составлены таблицы значений твердости как в исходном состоянии, так и после термической обработки.

Цветные металлы

Твердость меди по Бринеллю составляет 35 НВ, значения латуни равны 42-60 НВ единиц в зависимости от ее марки. У алюминия твердость находится в диапазоне 15-20 НВ, а у дюралюминия уже 70НВ.

Черные металлы

Твердость по Роквеллу чугуна СЧ20 HRC 22, что соответствует 220 НВ. Сталь: инструментальная – 640-700 НВ, нержавеющая – 250НВ.

Для перевода из одной системы измерения в другую пользуются таблицами. Значения в них не являются истинными, потому что выведены империческим путем. Не полный объем представлен в таблице.

HB HV HRC HRA HSD
228 240 20 60.7 36
260 275 24 62.5 40
280 295 29 65 44
320 340 34.5 67.5 49
360 380 39 70 54
415 440 44.5 73 61
450 480 47 74.5 64
480 520 50 76 68
500 540 52 77 73
535 580 54 78 78

Значения твердости, даже если они производятся одним и тем же методом, зависят от прилагаемой нагрузки. Чем меньше нагрузка, тем выше показания.

Где применяются показатели твердости по Шору

Области применения показателей, полученных методом Альберта Шора, разнообразны. Так, художники, выбирая ластики, отдадут предпочтение изделиям с маркировкой 20, а не 50. Для творчества больше подходят мягкие резинки, позволяющие деликатно поправить рисунок или растушевать карандаш. А вот в школе, офисе актуальнее резинки более упругие. Там цель – бесследно стереть недочеты.

Важны показатели упругости у герметика. Так, в случае, если его придется вскрывать, например, из-за того, что он потемнел, потрескался, более низкие показатели твердости окажутся выгоднее. Мягкий герметик удобнее демонтировать. Оптимальные показатели 10-25. Большие величины говорят о низком качестве герметика.

Твердость покрышек для велосипедов, конечно, должна быть ниже, чем для автомобильных колес. Но все же минимальные показатели около 30. А вот для скейтбордов необходимы твердые колеса. Минимальный порог – 75, а если нужны жесткие колеса, то отметка должна быть в районе 95, что схоже с требованиями к твердости шин вилочных погрузчиков.

Даже выбирая каски для рабочих строительной площадки, важно учитывать показатели твердости. Минимальные показатели – 75 единиц

Использовать защитные головные уборы из более мягкого пластика, с показателями 40-60, опасно для жизни и здоровья.

Характеристики методики Виккерса

Еще один очень простой способ, который отличается скоростью и точностью, но дороговизной оборудования. Перечислим особенности:

  • Используется алмазная пирамидка с более тупым углом – 136 градусов в вершине.
  • Не допускается деформация более 100 кгс.
  • Выдерживают время очень короткое – от 10 до 15 секунд.
  • Измерять можно параметры любого материала, в том числе особенно прочного, а также сталей, которые прошли термическую обработку.

Последовательность исследования

Упрощенный алгоритм:

  • Проверьте поверхностный слой детали, а также все оборудование.
  • Рассчитайте допустимое усилие.
  • Установите образец, закрепите его.
  • Запустите аппарат и спустя 10-15 секунд проанализируйте итог.

Единицы измерения твердости

Каждый способов измерения сопротивления металла к пластической деформации имеет свою методику его проведения, а также единицы измерения.

Измерение твердости мягких металлов производится методом Бринелля. Данному способу подвергаются цветные металлы (медь, алюминий, магний, свинец, олово) и сплавы на их основе, чугуны (за исключением белого) и отожженные стали.

Твердость по Бринеллю определяется вдавливанием закаленного, отполированного шарика из шарикоподшипниковой стали ШХ15. Окружность шарика зависит от испытуемого материала. Для твердых материалов – все виды сталей и чугунов – 10 мм, для более мягких – 1 – 2 — 2,5 — 5 мм. Необходимая нагрузка, прилагаемая к шарику:

  • сплавы железа – 30 кгс/мм2;
  • медь и никель – 10 кгс/мм2;
  • алюминий и магний – 5 кгс/мм2.

Единица измерения твердости – это числовое значение и следующий за ними числовой индекс HB. Например, 200 НВ.

Твердость по Роквеллу определяется посредством разницы приложенных нагрузок к детали. Вначале прикладывается предварительная нагрузка, а затем общая, при которой происходит внедрение индентора в образец и выдержка.

В испытуемый образец внедряется пирамида (конус) из алмаза или шарик из карбида вольфрама (каленой стали). После снятия нагрузки производится замер глубины отпечатка.

Единица измерения твердости – это условные единицы. Принято считать, что единица — это величина осевого перемещения конуса, равная 2 мкм. Обозначение твердости маркируется тремя буквами HR (А, В, С) и числовым значением. Третья буква в маркировке обозначает шкалу.

Методика отображает тип индентора и прилагаемую к нему нагрузку.

Тип шкалы Инструмент Прилагаемая нагрузка, кгс
А Конус из алмаза, угол вершины которого 120° 50-60
В Шарик 1/16 дюйма 90-100
С Конус из алмаза, угол вершины которого 120° 140-150

В основном, используются шкалы измерения А и С. Например, твердость стали HRC 26…32, HRB 25…29, HRA 70…75.

Измерению твердости по Виккерсу подвергаются изделия небольшой толщины или детали, имеющие тонкий, твердый поверхностный слой. В качестве клинка используется правильная четырехгранная пирамида угол при вершине, которой составляет 136°. Отображение значений твердости выглядит следующим образом: 220 HV.

К определению микротвердости прибегают, когда необходимо получить значения мелких деталей, тонкого покрытия или отдельной структуры сплава. Измерение производят путем измерения отпечатка наконечника определенной формы. Обозначение значения выглядит следующим образом:

Н□ 0,195 = 2800, где

□  — форма наконечника;

0,196  — нагрузка на наконечник, Н;

2800 – численное значение твердости, Н/мм2.

Оборудование для проведения измерения

На момент разработки рассматриваемой методики измерения твердости специального оборудования не было

После того, как в машиностроительной и других областях промышленности установили важность этой физико-механической характеристики, было разработано специальное оборудование, которое основано также на вдавливании шарика или конуса в тестируемый объект. Современное оборудование позволяет с высокой точностью контролировать величину прилагаемой силы и времени выдержки

Твердомером измеряется твердость, как правило, небольших объектов, являющимися образцами получаемой заготовки. Это связано с весьма компактными размерами большинства моделей рассматриваемых устройств.

К особенностям применяемого оборудования можно отнести нижеприведенные моменты:

  1. Испытуемый образец, как правило, располагается на столике.
  2. Алмазный наконечник опускается с помощью грузового рычага.
  3. Важным моментом является то, что наконечник опускается плавно. Это достигается при применении рукоятки с масленым амортизатором.
  4. Время выдержки применимой нагрузки зависит от размеров испытуемого образца. Как правило, показатель составляет 3-6 секунд. Сила воздействия определяется также величиной заготовки.
  5. Важные параметры вводятся при помощи специального пульта программирования. За счет того, что контроль прилагаемой силы и время выдержки проводит оборудование, точность получаемых результатов довольно высока.

Рассматриваемое оборудование производится достаточно большим количеством различных компаний. При этом стоимость предложения может колебаться в достаточно большом диапазоне.

КАЛИБРОВКА

Пружину
дюрометра (п. 4.4)
калибруют, установив дюрометр в вертикальном положении и опустив кончик
индентора (п. 4.2)
на небольшую опору в центре одной из чашек весов (черт. 3), во избежание
взаимодействия прижимной поверхности дюрометра (п. 4.1) и чашки весов. Опора на
чашке имеет небольшой цилиндрический выступ высотой около 2,5 мм, диаметром около
1,25 мм

Аппаратура
для калибровки пружины дюрометра

Черт.
3

с небольшим
конусным углублением сверху для кончика индентора. Масса этой опоры уравновешивается
грузом на другой чашке весов, на которую помещают грузы и для уравновешивания
силы, прилагаемой к индентору при разных показаниях шкалы. Измеряемая сила
должна равняться силе, вычисляемой по формуле, приведенной в п. 4.4а, в
пределах ±75 мН или по формуле, приведенной в п. 4.4б, в пределах ±445 мН.

Примечание. Можно пользоваться приборами,
специально предназначенными для калибровки дюрометров. Весы или приборы,
применяемые для калибровки, должны давать возможность измерять или прилагать
силу к кончику индентора в пределах 3,9 мН для дюрометра типа А и в пределах
19,6 мН для дюрометра типа D.

ПРИЛОЖЕНИЕ

Рекомендуемое

ДОПОЛНИТЕЛЬНЫЕ
ТРЕБОВАНИЯ

к нагрузке,
прилагаемой к индентору

Нагрузка,
прилагаемая к индентору с помощью калиброванных пружин,указана в
таблице.

Метод

Нагрузка

Н

Допускаемая погрешность

гс

Допускаемая погрешность

А

0,550 +
0,075 НА

0,078

56 +
7,66 НА

8

D

0,445 НD

0,441

45,36 НD

45

Примечание. НА и hd — твердость по шкале прибора в
единицах твердости по методу А и D
соответственно.

ИНФОРМАЦИОННЫЕ
ДАННЫЕ

1.       
ПОДГОТОВЛЕН
И ВНЕСЕН ТК 230 «Пластмассы, полимерные материалы и методы испытаний»

2.       
УТВЕРЖДЕН
И ВВЕДЕН В ДЕЙСТВИЕ Постановлением Комитета стандартизации и метрологии СССР от
29.12.91 № 2328

Настоящий
стандарт подготовлен методом прямого применения международного стандарта ИСО
868-85 «Пластмассы и эбонит. Определение твердости при вдавливании с помощью
дюрометра (твердость по Шору)» с дополнительными требованиями, отражающими
потребности народного хозяйства

3.       
Срок
первой проверки — 1997 г.

4.       
ВЗАМЕН
ГОСТ 24621-81

5.       
ССЫЛОЧНЫЕ
НОРМАТИВНО-ТЕХНИЧЕСКИЕ ДОКУМЕНТЫ

Обозначение НТД, на который
дана ссылка

Номер раздела, пункта

2

2, 7, 7.1, 7.2

1. Назначение и область распространения. 1

2. Ссылки. 2

3. Принцип. 2

4. Аппаратура. 2

5. Образец для испытаний. 3

6. Калибровка. 4

7. Атмосферы для кондиционирования
и испытания. 4

8. Проведения испытания. 4

9. Протокол испытания. 5

Приложение. 5

Принцип измерения

Рассматриваемый метод применяют для низкомодульных материалов, таких как полимеры, а именно каучуки, элистомеры, пластмассы, продукты их вулканизации. Он включает два способа: вдавливания и отскока.

Принцип первого способа Шора состоит в определении величины вдавливания в материал конкретного индентора. Твердость определяется упругостью и вязкоэластичными параметрами,  она обратно зависима от глубины вдавливания. К тому же результаты зависят от формы индентора и приложенной силы. Ввиду этого нет взаимосвязи данных, полученных с применением при измерениях различных приборов и даже устройств с разными параметрами. К тому же твердость, измеряемая рассматриваемым методом Шора, не связана с каким-либо параметром исследуемого материала, поскольку он является эмпирическим.

Шкала твердости по Шору

Рассматриваемая технология весьма распространена. Этому способствуют ее следующие достоинства:

  • Она проста, в том числе благодаря конструкции прибора.
  • Такой метод определения твердости обеспечивает быстроту измерений.
  • Подходит для различных поверхностей, в том числе криволинейных, значительных радиусов, крупногабаритных предметов, готовых деталей. При этом технология характеризуется невысокой точностью вследствие значительного разброса значений.

Способ отскока состоит в определении твердости по величине отскока вертикально падающего бойка с заданной высоты после удара об исследуемую поверхность.

Примерное соотношение разных шкал

Для выражения твердости применяются условные единицы измерения. В основном данную технологию Шора применяют для твердых материалов.

К тому же, рассматриваемый метод Шора распространен в промышленности ввиду быстроты и простоты выполнения измерений. Тем его применяют, в основном, для контроля температурной обработки. Подходит для определения твердости крупных предметов, криволинейных поверхностей, готовых деталей. При этом, как и первый метод Шора, характеризуется низкой точностью ввиду того, что величина отскока бойка определяется, помимо твердости, многими прочими параметрами, а именно шероховатостью поверхности, структурой, толщиной и др.

Таким образом, несмотря на различные технологии осуществления, методы Шора близки по качествам: благодаря простоте они обеспечивают большую оперативность измерений, но с низкой точностью.

Проблема рассматриваемой технологии состоит в том, что твердость по Шору невозможно точно перевести в прочие величины твердости и прочности при растяжении. Это объясняется оторванностью твердости Шора от фундаментальных характеристик из-за эмпиричного характера метода.

Данная технология имеет преимущественно практическую направленность ввиду того, что определяемый ею показатель влияет на эксплуатационные характеристики. Например, таким методом измеряют твердость резины автомобильных шин.

Применение

Значение твердости материалов по Шору применяется широко. Ее применяют люди разных профессий и специальностей – от художников до строителей.

В частности, важны показатели твердости по Шору для полимеров и эластомеров, особенно для последних. Исходя из данных по твердости тот или иной материал во многом выбирается для выпуска конкретного изделия. Особенно это касается изделий из каучуков, резин, эластомеров, термоэластопластов и т.д.

В области строительства показатели твердости важны для герметиков, уплотнительных материалов – колец, прокладок, сальников. Тоже самое можно сказать про машиностроение. Для строительной индустрии также важны значения твердости защитных касок для персонала. При использовании каски из мягкого материала с Шором до 70 единиц по шкале Dможно получить травму и нанести вред здоровью.

Даже для канцелярских и учебных товаров твердость эластомера по Шору может иметь значение, например для выбора ластиков для корректировки документов. А вот твердость пишущих карандашей определяется по-другому и обозначается по собственной шкале: Н, В, HB, Т и т.д.

Очень важна твердость по Шору для самых разнообразных шин. Твердость велосипедных шин должна быть невысока, автомобильные шины уже тверже, еще более высокой твердостью обладают различные специальные колеса, например для роликовых коньков, скейтбордов, автопогрузчиков и прочей подобной спецтехники.

 

Рис2. Ранжирование широко используемых изделий по их твердости

В области медицины значение твердости эластичных материалов учитывают при подборе специальных бинтов, предназначенных для фиксации шин при повреждениях конечностей и травмах костей. Дело в том, что бинты с низкой твердостью могут недостаточно зафиксировать шину, а при очень высокой есть риск пережатия сосудов и нарушения кровотока.

Государство старается стандартизировать значения твердостей наиболее распространенных и важных материалов. Изначально еще в СССР в 1975 году такие стандарты были разработаны и приняты для того, чтобы регламентировать твердость резины. И на сегодня этот стандарт действует со множеством исправлений.

В заключение статьи отметим, что метод твердости Шора уже около ста лет является актуальным способом измерения и сравнения значений для многих применений. Это обусловлено его объективностью и доступностью для использования в различных условиях.

Объявления о покупке и продаже оборудования можно посмотреть на         

Обсудить достоинства марок полимеров и их свойства можно на               

Зарегистрировать свою компанию в Каталоге предприятий

Вернуться к списку терминов

Проведение испытания

При испытании материалов, твердость которых не зависит от относительной влажности, дюрометр и образцы для испытания кондиционируют не менее 1 ч в условиях одной из стандартных атмосфер по ГОСТ 12423-2013 «Пластмассы. Условия кондиционирования и испытания образцов (проб)» (ISO 291), защитив их от воздействия прямых солнечных лучей. При испытании материалов, твердость которых зависит от относительной влажности, образцы для испытаний следует кондиционировать по тем же стандартам или согласно соответствующей нормативно-технической документации на испытуемый материал.

При этих же условиях проводят испытание.

Испытуемый образец должен иметь толщину не менее 6 мм. Для достижения необходимой толщины образец для испытаний может состоять из нескольких тонких слоев, но результаты испытаний, полученные с такими образцами, могут не согласовываться с результатами испытаний цельных образцов, так как поверхности таких слоев иногда не полностью соприкасаются друг с другом.

Размеры образцов должны позволять проводить испытание на расстоянии не менее 12 мм от любого края, если только заранее не будет известно, что при испытаниях на меньшем расстоянии от края достигаются идентичные результаты. Поверхность образца в месте контакта с опорной поверхностью на площади радиусом не менее 6 мм от кончика индентора должна быть очень ровной. На кривых, неровных или шероховатых поверхностях нельзя получить удовлетворительные результаты измерения твердости с помощью дюрометра.

Испытуемый образец помещают на твердую ровную горизонтальную поверхность. Дюрометр устанавливают в вертикальном положении так, чтобы кончик индентора находился на расстоянии не менее 12 мм от любого края образца. Как можно быстрее без толчка к образцу прижимают опорную поверхность дюрометра, держа её параллельно поверхности испытуемого образца. К опорной поверхности с помощью специального приспособления или груза прилагают давление, достаточное для обеспечения надежного контакта с образцом.

Допускается пригружение твердомера вручную.

Снимают показания индикаторного устройства спустя 15+1 с. Если необходимо произвести мгновенное измерение, то показание снимают в течение 1 с после прижатия опорной поверхности к образцу. В этом случае записывают максимальное значение, которое покажет индикатор дюрометра.

Лучшая воспроизводимость может быть достигнута путём использования подставки (штатива) для дюрометра или груза, центрируемого по оси индентора, или того и другого вместе для прижатия опорной поверхности к образцу. Для дюрометра типа А рекомендуется масса груза 1 кг, а для дюрометра типа D — 5 кг. Интервал времени, после которого снимают показания, может устанавливаться на отдельные материалы собственной нормативно-технической документацией.

Проводят пять измерений твердости в разных местах поверхности образца, но на расстоянии не менее 6 мм от точки предыдущего измерения, и определяют среднее значение. Рекомендуется при получении с помощью дюрометра типа A значений выше 90 испытания проводить с дюрометром типа D, а при получении с помощью дюрометра типа D значений меньше 20 испытания проводить с помощью дюрометра типа A.

Оформляют протокол испытаний, в который включают:

  • ссылку на стандарт;
  • полную идентификацию испытуемого материала;
  • описание образца для испытания, включая толщину, а в случае применения составного образца и число слоев;
  • температуру испытания и относительную влажность, если твердость испытуемого материала зависит от влажности;
  • тип дюрометра (A, D и т. д.);
  • если известно и если требуется, время, прошедшее с момента изготовления образца до момента измерения твердости;
  • отдельные значения твердости и интервал времени, по истечении которого эти показания снимались;
  • среднее значение твердости;
  • отдельные подробности процедуры, не указанные в стандартах, на которые имеются ссылки, и любые другие указания, которые могут повлиять на результаты.

Показания можно записывать по следующей форме, твердость по Шору: А/15:45, где A — тип дюрометра, 15 — время в секундах от момента приведения опорной поверхности в тесный контакт с образцом до момента снятия показания, 45 — показания. Аналогичным образом твердость по Шору D/1:60 означает показание 60, полученное с помощью дюрометра типа D в течение 1 с или от максимального показания.

Числа твердости HRC для некоторых деталей и инструментов

Детали и инструменты Число твердости HRC
Головки откидных болтов, гайки шестигранные, рукоятки зажимные 33. 38
Головки шарнирных винтов, концы и головки установочных винтов, оси шарниров, планки прижимные и съемные, головки винтов с внутренними шестигранными отверстиями, палец поводкового патрона 35. 40
Шлицы круглых гаек 36. 42
Зубчатые колеса, шпонки, прихваты, сухари к станочным пазам 40. 45
Пружинные и стопорные кольца, клинья натяжные 45. 50
Винты самонарезающие, центры токарные, эксцентрики, опоры грибковые и опорные платики, пальцы установочные, цанги 50. 60
Гайки установочные, контргайки, сухари к станочным пазам, эксцентрики круговые, кулачки эксцентриковые, фиксаторы делительных устройств, губки сменные к тискам и патронам, зубчатые колеса 56. 60
Рабочие поверхности калибров – пробок и скоб 56. 64
Копиры, ролики копирные 58. 63
Втулки кондукторные, втулки вращающиеся для расточных борштанг 60. 64
Оцените статью
Рейтинг автора
5
Материал подготовил
Андрей Измаилов
Наш эксперт
Написано статей
116
Добавить комментарий