Как рассчитать потребляемую мощность

Как определить мощность тока

В бытовых условиях израсходованную электроэнергию измеряют при помощи электрического счетчика. Во время прохождения тока через счетчик, внутри происходит вращение облегченного алюминиевого диска. Вращение диска происходит со скоростью, пропорциональной напряжению и силе. Число сделанных оборотов за определенное количество времени, показывает работу тока, совершенную за это время. Измерение работы тока производится в киловатт часах (кВт/ч).

В чем измеряется мощность электрического тока

Мощность электрического тока

Расчет потребляемой мощности

Формула электрической мощности

Как найти мощность

Стоимость

Сетевая мощность / Фактическая мощность

Встречаются два понятия — сетевая мощность и фактическая мощность, которые по сути означают одно и то же.

Разница лишь в том, что

  • фактическая мощность используется для расчета резервируемой мощности, а
  • сетевая мощность используется для расчета стоимости услуг по передаче электроэнергии на двухставочном тарифе.

Для общего понимания, давайте посмотрим на упрощенный пример расчета фактической мощности (пошаговый расчет по этой ссылке).

И так, берем часы пиковой нагрузки вашего региона, как правило, они попадают на интервал между 8:00 утра и 21:00 вечера.

Берем почасовое потребление предприятия за первые рабочие сутки месяца в часы пиковой нагрузки, то есть с 8:00 утра до 21:00 вечера.

Допустим максимальное потребление на вашем предприятии было с 10:00 до 11:00 и составляло150 кВт*ч.

Соответственно, сетевая мощность (фактическая мощность) за первые сутки равна 150 кВт.

Таким же образом находим сетевую мощность за каждые рабочие сутки за месяц.

Суммируем сетевую мощность за месяц и делим на количество рабочих дней месяца.

Сетевая мощность (Фактическая мощность) = сумма максимальной мощности по рабочим дням / количество рабочих дней

Учет электроэнергии

Единица измерения мощности широко применяется при измерениях и учете потребленной электроэнергии. Основой является ватт х час, показывающий количество работы, произведенной в течение 1 часа при электрической мощности 1Вт.

Однако данная единица имеет небольшое значение и не очень удобна для подсчетов существенных объемов потребленной электроэнергии. Поэтому общепринятым параметром считается киловатт-час (кВт х час), равный 1 тысяче ватт-часов.

Нередко возникает потребность в измерении мощности того или иного устройства. Для этих целей используется – ваттметр. Он предназначен для замеров активной мощности и включает в себя 4 контакта. Два из них подключаются последовательно с измеряемой нагрузкой, а два других – параллельно.

В чем измеряется мощность электрического тока

В чем измеряется работа тока

В чем измеряется напряжение

Что измеряют в джоулях

Сколько в киловатте ватт

Сколько потребляет электрокотел

Электрокотлы устанавливаются в домах для отопления и нагрева воды. Однако за простотой конструкции и легкостью ее эксплуатации скрывается большой расход электроэнергии. Модели электрокотлов различаются по мощности, конструкции, количеству контуров и способу нагрева теплоносителя (ТЭНы, электродный или индукционный нагрев). Двухконтурные котлы используются для отопления и нагрева воды. Бойлерные модели более экономичные, нежели проточные.

Выбор котла осуществляется на основании необходимой мощности, которой он должен обладать, чтобы обеспечить нагрев помещений заданной площади. При расчете следует учитывать, что кВт — это минимальная мощность прибора, необходимая для обогрева 10 кв.м.площади помещения. Дополнительно учитываются климатические условия, наличие дополнительного утепления, состояние дверей, окон, пола и присутствие щелей в них, теплопроводность стен.

Обратите внимание! На итоговую мощность электрокотла оказывает влияние способ нагрева теплоносителя, при этом электродные устройства способны обогреть большую площадь, затратив при этом меньшее количество электроэнергии.

Для определения расхода электроэнергии электрокотла необходимо выполнить расчет режима его работы. При этом следует учитывать, что устройство будет работать на полную мощность половину сезона. В расчет принимается продолжительность его работы за сутки. Таким образом, для определения суммарного потребления электроэнергии в сутки, необходимо количество часов умножить на мощность устройства.

Двухконтурные котлы потребляют электроэнергию и в зимнее, и в летнее время.

Для снижения затрат на энергопотребление котла следует установить двухфазный счетчик, по которому расчет электроэнергии в ночное время осуществляется по сниженному тарифу. Также позволит сэкономить применение автоматического устройства управления электроприборами, которое будет контролировать работу устройства исходя из времени суток.

Как действует напряжение

Общее понятие электрического тока заключается в направленном движении заряженных частиц. Эти частицы представляют собой электроны, перемещение которых происходит под действием электрического поля. Чем больше зарядов нужно переместить, тем большая работа совершается полем. На эту работу влияет не только сила тока, но и напряжение.

Физический смысл этой величины заключается в том, что работа тока на каком-либо участке цепи соотносится с величиной заряда, который проходит по данному участку. В процессе этой работы положительный заряд перемещается из точки, где имеется небольшой потенциал, в точку с большим значением потенциала. Таким образом, напряжение определяется в виде разности потенциалов или электродвижущей силы, а сама работа является энергией.
Работа электрического тока измеряется в джоулях (Дж), а величиной электрического заряда является кулон (Кл). В результате, напряжение представляет собой отношение 1 Дж/Кл. Полученная единица напряжения называется вольтом.

Чтобы наглядно объяснить физический смысл напряжения, нужно обратиться к примеру шланга, наполненного водой. В данном случае, объем воды будет играть роль силы тока, а ее давление будет эквивалентно напряжению. При движении воды без наконечника, она свободно и в большом количестве перемещается по шлангу, создавая невысокое давление. Если же конец шланга прижать пальцем, то произойдет уменьшение объема при одновременном повышении давления воды. Сама струя будет перемещаться на значительно большее расстояние.

В электричестве получается то же самое. Сила тока определяется количеством или объемом электронов, перемещающихся по проводнику. Значение напряжения, по сути, является силой, с которой происходит проталкивание этих электронов. Отсюда следует, что при условии одинакового напряжения, проводник, проводящий большее количество тока, должен обладать и большим диаметром.

Физические единицы, характеризующие бытовую электросеть

Большинству читателей эти величины хорошо известны еще со школьной скамьи – они обязательно входят в базовый курс физики. Тем не менее, невостребованная длительное время информация  имеет свойство прятаться в глубинах сознания, поэтому – «освежим» ее.

Для того чтобы по замкнутой цепи пошел электрический ток, необходимо наличие напряжения. А напряжение – это разность потенциалов на противоположенных концах цепи — чаще всего рассматривается от источника питания. Сам же потенциал – это величина накопленного в данной точке электрического заряда, по сути – ее энергетическая способность. И потенциал, и его разность исчисляются в вольтах (В).

Замер напряжения в бытовой сети переменного тока

Напряжение может быть постоянным (что хорошо знают, например, автомобилисты), или переменным, в котором полюса меняются местами с определенной частотой. Это дает множество преференций в вопросах передачи электроэнергии на большие расстояния и ее использования по назначению. Поэтому-то нам в повседневной жизни чаще приходится иметь дело именно с переменным – 220 вольт (В) при частоте 50 герц (Гц).

Если напряжение (разность потенциалов) достаточно велико для того, чтобы «протолкнуть» носители зарядов (электроны, ионы) по замкнутой цепи через нагрузку, в этой цепи появляется электрический ток. Он характеризуется особой величиной – силой тока, показывающей, сколько заряда прошло через конкретную точку в единицу времени, то есть в секунду. Для силы тока «выделена» особая единица измерения – ампер (А).

Измерить силу тока амперметром бывает значительно сложнее – прибор должен включаться последовательно с тестируемым участком (элементом) схемы, то есть приходится организовывать искусственный разрыв цепи.

Ток пропускается через нагрузку не просто так – от него ждут выполнения определенной работы, чаще всего связанной с преобразованием электрической энергии в другую — кинетическую, тепловую, звуковую и т.п. Количественное выражение выполняемой работы за единицу времени как раз и является мощностью. У нее своя единица измерения – ватт (Вт).

Вот эту мощность мы как раз и научимся оценивать, исходя из силы тока в цепи. И, естественно, наоборот.

Раз речь пошла о базовых формулах, то самое время их напомнить.

Итак, согласно закону Ома

I = U / R

где:

I — сила тока (А);

U — напряжение (В);

R — сопротивление (Ом).

Мощность же в цепи переменного или постоянного тока можно описать следующей базовой формулой:

P = U × I

Сразу скажем, что оговорка про «базовую формулу» была сделана вовсе не зря. В цепи переменного тока при использовании некоторых типов нагрузки данное соотношение может претерпеть некоторые трансформации – об этом будет рассказано в свое время.

Итак, определив или имея изначально значение одного из параметров, несложно чисто математически вычислить показатель другого параметра. При этом напряжение в сети выступает некоторой «константой»: она или уже известна, или сразу замеряется вольтметром — благо, сделать это, в отличие от силы тока, труда не составит.

Если остаются вопросы по основным физическим величинам в электрике – рекомендуем посмотреть довольно доходчивый видеосюжет на эту тему:

Мощность постоянного тока

Так как значения силы тока и напряжения постоянны и равны мгновенным значениям в любой момент времени, то мощность можно вычислить по формуле:

P=I⋅U{\displaystyle P=I\cdot U}.

Для пассивной линейной цепи, в которой соблюдается закон Ома, можно записать:

P=I2⋅R=U2R{\displaystyle P=I^{2}\cdot R={\frac {U^{2}}{R}}}, где R{\displaystyle R} — электрическое сопротивление.

Если цепь содержит источник ЭДС, то отдаваемая им или поглощаемая на нём электрическая мощность равна:

P=I⋅E{\displaystyle P=I\cdot {\mathcal {E}}}, где E{\displaystyle {\mathcal {E}}} — ЭДС.

Если ток внутри ЭДС противонаправлен градиенту потенциала (течёт внутри ЭДС от плюса к минусу), то мощность поглощается источником ЭДС из сети (например, при работе электродвигателя или заряде аккумулятора), если сонаправлен (течёт внутри ЭДС от минуса к плюсу), то отдаётся источником в сеть (скажем, при работе гальванической батареи или генератора). При учёте внутреннего сопротивления источника ЭДС выделяемая на нём мощность p=I2⋅r{\displaystyle p=I^{2}\cdot r} прибавляется к поглощаемой или вычитается из отдаваемой.

Таблица энергопотребления бытовых приборов

Для каждого дома число электрических устройств, значение потребления ими электроэнергии и продолжительность работы будет отличаться. Нижеизложенная таблица энергопотребления бытовых приборов содержит усредненную информацию:

Наименование прибора Мощность, кВт Время работы в сутки, ч Потребление в сутки, кВт*ч Потребление в месяц, кВт*ч
Холодильник 0,15-0,6 24 3,6-8,6 10,8-25,8
Освещение (10 ламп по 20 Вт) 0,020 5 0,1 3
Стиральная машина 1-2,2 1 1-2,2 20-30
Пылесос 0,65-2,2 15 минут 0,16-0,55 1,6-5,5
Телевизор 0,1-0,3 5 0,5-1,5 15-30
Микроволновая печь 1,5 30 минут 0,75 10-15
Электрический чайник 0,7-3 15 минут 0,25-0,75 7,5-16,5
Компьютер 0,1-0,2 5 0,5-1 7-20
Утюг 1,1 15 0,3 5-8
Посудомоечная машина 0,5-2,8 1 0,5-2,8 7,5-15
Мультиварка 0,2-2,4 1 0,2-2,4 2-24
Кухонный комбайн 0,2-2,0 15 минут 0,05-0,5 0,5-3
Кондиционер 0,7-1,3 7 3,5-8 15-35
Фен 1,2-1,5 15 минут 0,3-0,4 5-7
Обогреватель 1,5 5 7,5 75
Электрическая плита 2-8,5 3 5-10 30-150
Кофеварка 1,5-3,5 15 минут 0,3-0,8 5-10
Вытяжка 0,1-0,5 3 0,3-1,5 3-4,5

Что такое установленная мощность

Для того чтобы заранее спланировать установку в доме или квартире бытовой техники и оборудования, необходимо произвести оценку максимальной мощности, потребление которой будет осуществляться из электрической сети. Простое арифметическое сложение мощностей всех имеющихся потребителей не дает точных результатов, из-за своей неэффективности и неэкономичности.

Как правило, при такой оценке используются определенные факторы, учитывающие коэффициент использования и разновременность работы подключенных устройств. Кроме того, учитываются не только действующие, но и предполагаемые нагрузки. В результате, получается установленная мощность, измеряемая в кВт или кВА.

Значение установленной мощности будет равно сумме номинальных мощностей каждого прибора и устройства. Однако это значение не будет фактически потребляемой мощностью, которая практически всегда выше номинала. Данный параметр необходимо знать для того, чтобы правильно выбрать номинальную мощность того или иного устройства.

В промышленном производстве существует понятие полной установленной мощности. Этот показатель представляет собой арифметическую сумму полных мощностей каждого отдельно взятого потребителя. Он не совпадает с максимальной расчетной полной мощностью, поскольку при его расчетах используются различные коэффициенты и поправки.

Мгновенная электрическая мощность

Мгновенной мощностью называется произведение мгновенных значений напряжения и силы тока на каком-либо участке электрической цепи.

По определению, электрическое напряжение — это отношение работы электрического поля, совершенной при переносе пробного электрического заряда из точки A{\displaystyle A} в точку B{\displaystyle B}, к величине пробного заряда. То есть можно сказать, что электрическое напряжение равно работе по переносу единичного заряда из точки A{\displaystyle A} в точку B{\displaystyle B}. Другими словами, при движении единичного заряда по участку электрической цепи он совершит работу, численно равную электрическому напряжению, действующему на участке цепи. Умножив работу на количество единичных зарядов, мы, таким образом, получаем работу, которую совершают эти заряды при движении от начала участка цепи до его конца. Мощность, по определению, — это работа в единицу времени. Введём обозначения:

U{\displaystyle U} — напряжение на участке A−B{\displaystyle A-B} (принимаем его постоянным на интервале Δt{\displaystyle \Delta t}),
Q{\displaystyle Q} — количество зарядов, прошедших от A{\displaystyle A} к B{\displaystyle B} за время Δt{\displaystyle \Delta t},
A{\displaystyle A} — работа, совершённая зарядом Q{\displaystyle Q} при движении по участку A−B{\displaystyle A-B},
P{\displaystyle P} — мощность.

Записывая вышеприведённые рассуждения, получаем:

PA−B=AΔt{\displaystyle P_{A-B}={\frac {A}{\Delta t}}}

Для единичного заряда на участке A−B{\displaystyle A-B}:

Pe(A−B)=UΔt{\displaystyle P_{e(A-B)}={\frac {U}{\Delta t}}}

Для всех зарядов:

PA−B=UΔt⋅Q=U⋅QΔt{\displaystyle P_{A-B}={\frac {U}{\Delta t}}\cdot {Q}={U}\cdot {\frac {Q}{\Delta t}}}

Поскольку ток есть электрический заряд, протекающий по проводнику в единицу времени, то есть I=QΔt{\displaystyle I={\frac {Q}{\Delta t}}} по определению, в результате получаем:

PA−B=U⋅I{\displaystyle P_{A-B}=U\cdot I}.

Полагая время бесконечно малым, можно принять, что величины напряжения и тока за это время тоже изменятся бесконечно мало. В итоге получаем следующее определение мгновенной электрической мощности:

мгновенная электрическая мощность p(t){\displaystyle p(t)}, выделяющаяся на участке электрической цепи, есть произведение мгновенных значений напряжения u(t){\displaystyle u(t)} и силы тока i(t){\displaystyle i(t)} на этом участке:

p(t)=u(t)⋅i(t).{\displaystyle p(t)=u(t)\cdot i(t).}

Если участок цепи содержит резистор c электрическим сопротивлением R{\displaystyle R}, то

p(t)=i(t)2⋅R=u(t)2R{\displaystyle p(t)=i(t)^{2}\cdot R={\frac {u(t)^{2}}{R}}}.

Дифференциальные выражения для электрической мощности

Мощность, выделяемая в единице объёма, равна:

w=dPdV=E⋅j{\displaystyle w={\frac {dP}{dV}}=\mathbf {E} \cdot \mathbf {j} },

где E{\displaystyle \mathbf {E} } — напряжённость электрического поля, j{\displaystyle \mathbf {j} } — плотность тока. Отрицательное значение скалярного произведения (векторы E{\displaystyle \mathbf {E} } и j{\displaystyle \mathbf {j} } противонаправлены или образуют тупой угол) означает, что в данной точке электрическая мощность не рассеивается, а генерируется за счёт работы сторонних сил.

В случае изотропной среды в линейном приближении:

w=σE2=E2ρ=ρj2=j2σ{\displaystyle w=\sigma E^{2}={\frac {E^{2}}{\rho }}=\rho j^{2}={\frac {j^{2}}{\sigma }}},

где σ=def1ρ{\displaystyle \sigma \,{\overset {\underset {\mathrm {def} }{}}{=}}\,{\frac {1}{\rho }}} — удельная проводимость, величина, обратная удельному сопротивлению.

В случае наличия анизотропии (например, в монокристалле или жидком кристалле, а также при наличии эффекта Холла) в линейном приближении:

w=σαβEαEβ{\displaystyle w=\sigma _{\alpha \beta }E_{\alpha }E_{\beta }},

где σαβ{\displaystyle \sigma _{\alpha \beta }} — тензор проводимости.

Измерительные приборы

В основном измерительные приборы для измерения мощности используются в электрофизике, так как в механике, зная определенный набор параметров (скорость и силу), можно самостоятельно высчитать мощность. Но таким же способом и в электрофизике можно высчитывать мощность по параметрам, а на самом деле, в повседневной жизни мы просто не используем измерительных приборов для фиксации механической мощности. Так как чаще всего эти параметры для определенных механизмов и так обозначают. Что касаемо электроники, основным прибором является ваттметр, используемый в быту в устройстве обычного электросчетчика.

Ваттметры можно разделить на несколько видов по частотам:

    • Низкочастотные
    • Радиочастотные
    • Оптические

Ваттметры могут быть как аналоговыми, так и цифровыми. Низкочастотные (НЧ) имеют в своем составе две катушки индуктивности, бывают как цифровыми, так и аналоговыми, применяются в промышленности и быту в составе обычных электросчетчиков. Ваттметры радиочастотные делятся на две группы: поглощаемой мощности и проходящей. Разница состоит в способе подключения ваттметра в сеть, проходящие подключают параллельно сети, поглощаемые в конце сети, как дополнительную нагрузку. Оптические ваттметры служат для определения мощности световых потоков и лазерных лучей. Применяются в основном на каких-либо производствах и в лабораториях.

Основные параметры

Для того чтобы иметь возможность охарактеризовать электричество как физическую величину, произвести соответствующие замеры и правильно применить в соотношении с другими принимающими приборами и устройствами, специалисты предусмотрели наличие следующих параметров:

– сила тока (измеряется в амперах);

– напряжение (вольты);

– сопротивление (единица величины – Ом);

– Ватт – единица мощности электрического тока.

Электрическая мощность

Прежде, чем более глубоко разобраться в таком термине, как «единица мощности электрического тока», необходимо вспомнить, что такое мощность как физическая величина в целом.

Обычно, мы под этим понятием подразумеваем какую-то силу, которой обладает конкретное устройство, предмет (например, двигатель внутреннего сгорания) или действие (взрыв газа, тротила и пр.). На самом деле, мощность является одной из физических величин, характеризующих соотношение выполненной работы за определенный промежуток времени по отношению к этому же временному промежутку. Таким образом, применяя данное определение к сфере электроэнергетики, можно сказать, что значение мощности электрического тока позволяет определить степень изменения энергии. Таким образом, резюмируем: мощностью называется скорость, с которой в системе происходит преобразование энергии.

Как правильно рассчитать мощность трехфазной сети

Если трехфазная сеть использует соединение «треугольник», то потребители могут получать однофазное напряжение фазное или линейное. При этом оно будет иметь разную величину: первое будет меньше второго примерно в 1,71 раза (точное значение равно квадратному корню из 3). Силу тока в первом и втором случаях легко рассчитать — будет одинаковой.

К сведению! Если используется вариант соединения «треугольником», то линейное и фазовое напряжения будут равны. Однако фазовый ток будет меньше линейного в 1,71 раза.

Характеристики трехфазных цепей

Далее рассказано, как рассчитать мощность трехфазной сети. Для этого необходимо просуммировать мощности всех трех фаз. В качестве примера соединение «треугольником». В этом случае для каждой фазы эта характеристика определяется по следующей формуле: P1 = U(f) * I(f) * cos(«фи«).

В формуле расчета мощности трехфазной сети использованы такие обозначения:

  • P1 — мощность каждой из трех фаз;
  • U (f) — фазовое напряжение;
  • I (f) — фазовая сила тока;
  • «фи» — угол, определяемый соотношением активной и реактивной мощности.

Мощность, выделяющаяся на нагрузке, включает в себя активную и реактивную компоненты. Между ними существует сдвиг фаз «фи». Его смысл состоит в том, что при помощи указанного коэффициента определяется доля реактивной мощности в ее суммарной величине.

Чтобы определить мощность трехфазной сети, нужно просуммировать мощность всех трех фаз. Формула выглядит следующим образом: P = 3 * (U (f) * I(f) * cos(«фи»)). P означает искомую величину. Эту величину при расчете можно определить с помощью линейных величин силы тока и напряжения. Поскольку U(f) = U(l) / кв. корень(3), а I(f) = I(l), то мощность можно будет вычислять таким образом.

P = 3 * (U(f) * I(f) * cos(«фи»)) = 3 * (U(l) * I(l) * cos(«фи») / кв. корень(3)) = кв. корень(3) * U(l) * I(l) * cos(«фи«).

При подключении с помощью схемы «треугольник» вычисления выполняются аналогичным образом. При расчете активной мощности в трехфазной сети нужно учитывать, что фазовое и линейное напряжения будут равны, но фазовая сила тока будет в кв. корень (3) меньше линейной.

Обратите внимание! После выполнения преобразований формула мощности трехфазного тока будет такой же, как и для соединения «звездой». Счетчик электроэнергии

Счетчик электроэнергии

Использование трехфазных сетей имеет свои важные преимущества и является широко распространенным. Чтобы грамотно их эксплуатировать, необходимо знать характеристики и формулы для расчета напряжения.

Предметы-трансформеры

Какие шторы лучше подойдут к разным цветам обоев: примеры с фото

Химические свойства

Как снизить потребление электроэнергии бытовыми приборами

Для снижения расхода электрической энергии, которую расходуют бытовые приборы, существует несколько действенных приемов. Хороший результат дает использование энергосберегающего холодильника, который может работать в таком режиме круглый год, независимо от погодных условий.

Систему освещения в доме лучше организовать с использованием современных светодиодных или энергосберегающих ламп. Их установка позволит не только экономить электроэнергию, они также характеризуются более длительным периодом работы. Хороший эффект дает установка местного освещения на кухне, в спальне, прихожей, в гостиной, что также позволяет экономить электроэнергию.

Обратите внимание! Использование удлинителей и переходников увеличивает потребление электроэнергии.

Холодильники и морозильные камеры следует своевременно размораживать. Наличие излишков льда на внутренних стенках устройств способствует увеличению расхода электроэнергии.

Советы по экономии потребления электроэнергии.

Во время работы компьютера можно выбрать для него оптимальный режим энергопотребления. Он будет автоматически выключаться, когда будет находиться в бездействии определенное время. При выходе из режима сна энергии понадобится намного меньше, в сравнении с обычным включением.

На заметку! Снизить затраты на электроэнергию удастся при установке многотарифного счетчика, ночные и дневные показания которого исчисляются по разным тарифам. Ночью стоимость электричества ниже.

При работе обогревательных приборов можно использовать теплоотражающие экраны, которые способствуют увеличению теплоотдачи и снижению потребления электроэнергии.

При выборе бытовой техники следует учитывать, сколько ватт (киловатт) расходует прибор в час. Лучше отдавать предпочтение экономичным устройствам, которые будут удовлетворять заявленным требованиям, при этом экономить энергоресурс, необходимый для их функционирования.

Что можно узнать о электродвигателе, зная его каталожные данные

Каталоги асинхронных двигателей содержат все необходимые данные для выбора двигателей.

В каталогах указываются: типоразмер двигателя, номинальная мощность для режима S1 (длительный режим), частота вращения при номинальной мощности, ток статора при номинальной мощности, коэффициент полезного действия при номинальной мощности, коэффициент мощности при номинальной мощности, кратность начального пускового тока, т. е. отношение начального пускового тока к номинальному, или кратность пусковой мощности, т. е. отношение полной мощности при пуске к номинальной мощности, кратность начального пускового момента, кратности минимального момента, динамический момент инерции ротора.

Кроме этих данных, относящихся к номинальному или пусковому режимам, в каталогах сообщаются более подробные данные об изменении КПД и коэффициента мощности при изменении нагрузки на валу электродвигателя. Эти данные приводятся в табличной или графической форме. Пользуясь этими данными, можно рассчитать также ток статора и скольжение при различных значениях нагрузки на валу.

В каталогах указываются также размеры, необходимые для установки двигателя на объекте и присоединения его к питающей сети.

На различных этапах создания, распределения, установки, эксплуатации и ремонта двигателей требуется различная детальность описания. Для большинства целей достаточна детализация на уровне типоразмера. Каталожное описание типоразмера двигателей серий 4А и АИ содержит признаки, обозначаемые максимально 24 символами.

Примеры. 4А160М4УЗ — асинхронный двигатель серии 4А, со степенью защиты IP44, станина и щиты чугунные, высота оси вращения 160 мм, выполнен в станине средней длины М, четырехполюсный, предназначен для эксплуатации в умеренном климате, категория размещения 3.

4АА56В4СХУ1 — асинхронный двигатель серии 4А со степенью защиты IP44, станина и щиты алюминиевые, высота оси вращения 56 мм, имеет длинный сердечник, четырехполюсный, сельскохозяйственная модификация по условиям окружающей среды, предназначен для эксплуатации в умеренном климате, категория размещения 1.

Номинальной мощностью двигателя называют механическую мощность на валу в режиме работы, для которого он предназначен предприятием-изготовителем.

Ряд номинальных мощностей электродвигателей: 0,06; 0,09; 0,12; 0,18; 0,25; 0,37; 0,55; 0,75; 1,1; 1,5; 2,2; 3,7; 5,5; 7,5; 11; 15; 18,5; 22; 30; 37; 45; 55; 75; 90; 110; 132; 160; 200; 250; 315; 400 кВт.

Предельно допустимая мощность двигателя может изменяться при изменении режима работы, температуры охлаждающего агента и высоты установки над уровнем моря.

Двигатели должны сохранять номинальную мощность при отклонениях напряжения сети от номинального значения в пределах ±5 % при номинальной частоте сети и при отклонениях частоты сети в пределах ±2,5 % при номинальном напряжении. При одновременном отклонении напряжения и частоты сети от номинальных значений двигатели должны сохранять номинальную мощность, если сумма абсолютных отклонений не превосходит 6 % и каждое из отклонений не превышает нормы.

Синхронная частота вращения электродвигателя

Ряд синхронных частот вращения асинхронных двигателей установлен ГОСТ и при частоте сети 50 Гц имеет следующие значения: 500, 600, 750, 1000, 1500 и 3000 об/мин.

Динамический момент инерции ротора электродвигателя

Мерой инерционности тела при вращательном движении является момент инерции, равный сумме произведений масс всех точечных элементов на квадрат их расстояний от оси вращения. Момент инерции ротора асинхронного двигателя равен сумме моментов инерции многоступенчатого вала, сердечника, обмотки, вентилятора, шпонки, вращающихся частей подшипников качения, обмоткодержателей и нажимных шайб для фазного ротора и т. д.

Оцените статью
Рейтинг автора
5
Материал подготовил
Андрей Измаилов
Наш эксперт
Написано статей
116
Добавить комментарий