Содержание
- 1 Характеристика сплавов на основе хрома и никеля
- 2 Оптимальная толщина металла для печи в баню
- 3 Область применения сплавов специального назначения
- 4 Жаростойкие стали и сплавы
- 5 Примечания
- 6 Тугоплавкие металлы и сплавы
- 7 Пищевая нержавеющая сталь
- 8 Особенности материалов с жаропрочными свойствами
- 9 Характеристики жаропрочных материалов
- 10 2 Коррозионно-, жаро- и хладостойкие аустенитные сплавы
- 11 Применение
- 12 Марки жаростойких и жаропрочных сталей
- 13 Тугоплавкие металлы и сплавы
- 14 4 Аустенитно-ферритные и аустенитные жаростойкие сплавы
- 15 Как СДЕЛАТЬ ШАЛАШ ???
Характеристика сплавов на основе хрома и никеля
Сплавы, обладающие большой жаропрочностью, очень востребованы в энергетическом машиностроении (лопатки паровых турбин, части двигателей летательных аппаратов и так далее). Причем потребность в подобных материалах постоянно растет. Более того, производство требует от ученых получения все более и более совершенных материалов, способных сохранять свою работоспособность при очень высоких температурах. Поэтому постоянно ведутся работы по увеличению показателей жаропрочности. Никель, точнее легирование этим элементом стали, способствует этому.
Все жаростойкие стали легируются никелем (не менее 65 %). В обязательном порядке имеется и хром. Содержание этого элемента не должно быть менее 14 %. В противном случае поверхность металла будет интенсивно окисляться.
Стали, дополнительно легируются алюминием, ванадием и другими тугоплавкими элементами. Алюминий, например, даже при комнатной температуре покрывается тонкой окисной пленкой, которая препятствует проникновению коррозии вглубь металла. То есть не образуется окалина.
Оптимальная толщина металла для печи в баню
При определении толщины металла, учитывают две основные характеристики, влияющие на рабочие параметры банной печи:
- Прогорание стали – если для топки использовать тонкостенный лист обычного металла, спустя буквально полгода топки, придется ремонтировать печь. Обычная сталь толщиной 4 мм, обеспечит быстрый прогрев парной, но прослужит недолго. По этой причине, производители делают топочную камеру из AISI 430, жаростойкой хромистой нержавеющей стали толщиной 4-6 мм.
- Теплопроводность – температура нагрева печи напрямую зависит от толщины стенок топки. Кажется, что проще было сделать топочную камеру из металла 10 мм и больше, и так предотвратить прогорание, но такой подход нецелесообразен по нескольким причинам. Чем толще металл, тем больше требуется тепловой энергии и времени, чтобы прогреть его и поддерживать необходимую температуру. Печное оборудование становится экономически невыгодным. Оптимальная толщина металла у банной печи, должна быть 6-8 мм.
Минимальная толщина стали в топочной камере 4 мм, допустима только при условии применения AISI 430 и 08Х17Т. В других случаях, нужна толщина металла не менее 6 мм. Большинство мастеров рекомендуют при самостоятельном изготовлении печи, использовать конструкционную сталь толщиной 8 мм.
Какими электродами надо варить банную печь
Чтобы сварить печь, потребуются электроды, выбираемые, в зависимости от используемой при производстве стали. Нержавейку варят методом аргонодуговой сварки. Подойдут электроды марки ЦЛ 11 и Д4.
После проведения сварочных работ, обязательно удаление окалин и протравка. Так можно избежать коррозии в месте сварного шва.
Электроды для сварки банных печей, изготовленных из конструкционной стали НИАТ-5, ЭА-112/15, ЭА-981/15 и ЭА-981/15. Толщина выбирается, в зависимости от плотности металла и температуры его прогрева.
Изготовить печь для бани своими руками, при наличии специальных навыков, грамотном выборе комплектующих и расходных материалов, не сложно.
Область применения сплавов специального назначения
Отраслей, в которых применяются сплавы с особенными характеристиками, множество. Ввиду своих улучшенных качеств, они являются незаменимыми в машиностроении, строительстве, нефтяной промышленности. Жаропрочные и жаростойкие сплавы применяются при изготовлении деталей турбин, запчастей для автомобилей. Стали, которые обладают высокими антикоррозийными характеристиками, незаменимы для производства труб, игл карбюраторов, дисков, всевозможных элементов химической промышленности. Рельсы для железной дороги, ковши, гусеницы для транспорта – основой для всего этого являются износостойкие стали. В массовом производстве болтов, гаек и других подобных деталей используются сплавы автоматные. Рессоры должны быть достаточно упругими и износостойкими. Поэтому материалом для них является пружинная сталь. Для улучшения данного качества они дополнительно легируются хромом, молибденом. Все специальные сплавы и стали с набором определенных характеристик позволяют снизить стоимость деталей там, где раньше применялись цветные металлы.
Жаростойкие стали и сплавы
При нагревании в коррозионно-активных средах — в большинстве случаев это кислород газы — металлы
Таблица 10.2
Химический состав жаропрочных сплавов на основе никеля
Марка сплава | Содержание компонентов,% масс. | |||||||
Cr | Ti | Al | Mo | W, Nb | Fe | Mn | Другие | |
ХН77ТЮР | 19 … 22 | 2.5 … 2,9 | 0,6 … 1,0 | — | — | ≤ 1,0 | ≤0,4 | — |
ХН73МБТЮ | 13 … 16 | 2,4 … 2,8 | 1,3 … 1,7 | 2,8 … 3,2 | 1,8 … 2,2 Nb | ≤2,0 | ≤0,4 | — |
ХН70ВМЮ | 9 … 11 | — | 4,5 … 5,5 | 5 … 6,5 | 4,5 … 5,5 W | ≤5,0 | ≤0,4 | До 0,7 V |
ХН55ВМТКЮ | 9 … 12 | 1,4 … 2,0 | 3,6 … 4,5 | 4 … 6 | 4,5 … 6,5 W | ≤5,0 | ≤0,5 | 10 … 16 С |
Таблица 10.3
Химический состав жаропрочных сплавов на основе железа и никеля
Марка сплава | Содержание компонентов,% масс. | |||||
Cr | Ni | Al | W | Ti | Fe | |
ХН35ВТ | 14 … 16 | 34 … 38 | — | 2,8 … 3,5 | 1,1 … 1,5 | Ост. |
ХН35ВТЮ | 14 … 16 | 33 … 37 | 0,7 … 1,4 | 2,8 … 3,5 | 2,4 … 3,2 | Ост. |
подвергаются химической коррозии, окисления. Чем выше температура, тем быстрее развивается коррозия (рис. 10.7).
Процесс коррозии может быть замедлен, если на поверхности металла образуется плотная пленка окислов, препятствующая проникновению кислорода внутрь металла. Защитная пленка должна быть сплошной, пластической, прочно связанной с основным металлом. Образование такой пленки связано с наличием в составе сплава соответствующих легирующих компонентов, поэтому жаростойкость определяется только химическим составом сплава и не зависит от его структуры.
Железо образует с кислородом оксиды FeO, Fe3O4, Fc2O3. Окисленный слой, в котором преобладает FeO, является рыхлой, легко пропускает кислород и не имеет защитные свойства. Пленки на основе соединений Ре3О4 и Fe2O3 более плотные, но и они не защищают от окисления.
Для повышения жаростойкости в сталь вводят легирующие компоненты, которые имеют большее сродство к кислороду, чем железо, и образуют плотные оксидные пленки. К таким элементам относятся хром, кремний и алюминий.
Наиболее сильное влияние хрома на жаростойкость проявляется при его концентрации в сплаве 15 … 20%. Для работы при температурах до 800 ° С применяют ферритные и мартенситные хромистые стали, при более высоких температурах — аустенитные сплавы системы Fe — Ni — Cr» (табл. 10.4).
Содержание кремния и алюминия в сталях не превышает 4% за хрупкости сплавов с более высоким содержанием кремния и алюминия.
Рис. 10.7. Влияние температуры на скорость окисления железа
Таблица 10.4
Химический состав жаростойких сталей и сплавов
Марка стали (сплава) | Содержание компонентов,% масс. | |||||
C | Fe | Ni | Cr | Al | Другие | |
стали | ||||||
20Х23Н18 | к | основа | 17 … | 22 … | Si ≤ 1%; | |
0,12 | … 20 | … 25 | Mn ≤ 2% | |||
12Х25Н16ГАР | к | основа | 15 … | 23 … | 7% Mn; | |
0,2 | … 18 | … 26 | 0,3 … 5% N; | |||
0,01% В | ||||||
сплавы | ||||||
XH4510 | к | Ост. | 44 … | 15 … | 2,9 … | — |
0,10 | … 46 | … 17 | … 3,9 | |||
ХН78Т | к | 6 | основа | 19 … | 0,15 … | — |
0,12 | … 22 | … 0,35 | ||||
Х116010 | к | 20 | основа | 15 … | 2,6 … | — |
0,10 | … 18 | … 3,5 |
Жаростойкие стали и сплавы применяют для изготовления клапанов двигателей внутреннего сгорания, печного оборудования (ролики рольгангов, подовые плиты), сопловых аппаратов и жаровых труб в газотурбинных установках.
Примечания
- ↑ Авиация. Энциклопедия. М.: Большая Российская энциклопедия, 1994, с. 201
- Luft.-Forschung, Bd 18(1941), N 8, S. 275—279
- Pomp A., Krisch A.: Zur Frage der Dauerstandfestigkeit warmfester Staehle bei 600, 700 und 800 °C. Mitteilungen der KWI fuer Eisenforschung (Abhandl. 400), 1940
- Report on Visit to Germany and Austria to investigate Alloys for Use at High Temperature. BIOS Final Report N 396, London, 1946
- ↑ Giamei A.F., Pearson D.D., Anton D.L. Materials Research Society Symposium Proc. 1985, v. 39, pp. 293—307
- Туманов А. Т., Шалин Р. Е., Старков Д. П. Авиационное материаловедение. — в кн.: Развитие авиационной науки и техники в СССР. Историко-технические очерки. М.: Наука, 1980, с. 332—334
- Суперсплавы II под ред. Симса, Столоффа, Хагеля. Перевод на русский язык. М., Металлургия, 1995, т 1, стр. 29
- ↑
- Report on Visit to Germany and Austria to investigate Alloys for use at a High Temperatures/ — BIOS Final Report No 396. London 1946, p. 13.
Тугоплавкие металлы и сплавы
Если в производстве необходимы детали предположительная среда работы, которых будет тысяча или даже две тысячи градусов, то при сплаве нужно использовать тугоплавкие металлы.
Элементы, которые используются и температура их плавления такова:
- вольфрам (3410°С);
- тантал (3000°С);
- ниобий (2415°С);
- ванадий (1900°С);
- цирконий (1855°С);
- рений (3180°С);
- молибден (2600°С);
- гафний (2000°С).
Деформируются данные металлы при нагреве, потому что высокая температура провоцирует их изменение в хрупкое состояние. Их волокнистая структура формируется при нагревании до состояния рекристаллизации тугоплавких металлов. Жаропрочность увеличивается за счёт смесей из специальных добавок. А от окисления при температуре свыше тысячи градусов эти материалы защищают добавки из титана, тантала и молибдена.
Пищевая нержавеющая сталь
Данный вид металлопроката относится к шлифованным и отличается от остальных сортов особым способом обработки его поверхности. Финишный слой материала пищевого назначения шлифуется до появления блеска. Данный вид нержавейки экологически безопасен, не вступает в реакцию с кислотами, щелочами, моющими средствами.
Популярные марки и их применение:
- 08Х18Н10 – широко используется для выпуска пищевого оборудования.
- 08Х13 – металл, подходящий для изготовления кухонной посуды, столовых принадлежностей.
- 20Х13, 40Х13 – идеальный материал для производства моек и емкостей, в которых проводят тепловую и гигиеническую обработку продуктов. Его используют для выпуска оборудования, предназначенного для производства вина, спирта, продуктов питания.
- 08Х17 – востребованный материал для посуды, подвергающейся воздействию высоких температур.
Оптимальное количество легирующих элементов, входящих в состав нержавейки, образует защитную пленку на поверхности металла. Использование данного вида стали необходимо для производства изделий, которые подвергаются долгому воздействию паров воды, нагреванию и кипячению жидких пищевых продуктов. Благодаря свойствам пищевой стали при приготовлении еды не происходит химического взаимодействия между продуктами и емкостью, в которой они находятся.
Особенности материалов с жаропрочными свойствами
Жаропрочные стали и сплавы, как уже говорилось выше, способны успешно эксплуатироваться в условиях постоянного воздействия высоких температур, при этом не проявляя склонности к ползучести. Суть этого негативного процесса, которому подвержены стали обычных марок и другие металлы, заключается в том, что материал, на который воздействуют неизменная температура и постоянная нагрузка, начинает медленно деформироваться, или ползти.
Ползучесть, которой и стараются избежать, создавая жаропрочные стали и металлы другого типа, бывает двух видов:
- длительная;
- кратковременная.
Для определения ползучести сплавов в иследовательских центрах используют комплекс испытательных машин
Чтобы определить параметры кратковременной ползучести, материалы подвергают специальным испытаниям, для чего их помещают в печь, нагретую до определенной температуры, и прикладывают к ним растягивающую нагрузку. Такое испытание проводится в течение ограниченного промежутка времени.
Проверить материал на его склонность к длительной ползучести и определить такой важный параметр, как предел ползучести, за короткий промежуток времени не получится. Для этого испытуемое изделие, помещенное в печь, необходимо подвергать длительной нагрузке
Важность такого показателя, как предел ползучести материала, заключается в том, что он характеризует наибольшее напряжение, которое приводит к разрушению разогретого изделия после воздействия в течение определенного промежутка времени
Характеристики жаропрочных материалов
Главный параметр жаропрочных металлов – возможность противостоять механическим напряжениям и нагружению при нагревании до высоких значений, не разрушаясь и не деформируясь.
Способы нагружения, которые испытывают металлы:
- Нагрузки растягивания в статическом состоянии.
- Нагрузки посредством изгибания и скручивания.
- Температурные, предполагающие различные режимы нагрева.
- Переменные нагрузки динамического характера.
- Нагружения, оказываемые посредством направления потоков газов на металл.
Жаростойкие металлические материалы отличаются еще и повышенной антикоррозионностью и стойкостью к факторам окисления в условиях повышенных термических воздействий.
Технологический параметр ползучести
Наиболее значимая характеристика в технологических процедурах, где присутствуют жаропрочные стали, — это ползучесть. Эта характеристика свойственна любым твердым телам: кристаллическим и аморфным.
Для металлических материалов она выражается в медленных и постепенных пластических деформационных процессах, происходящих под влиянием неизменяемой нагрузки. Чем меньше скорость деформирования и ниже скорость ползучести, тем более высоко можно оценить жаропрочность металла, если напряжение и температурный режим остаются постоянными и заданными.
Характеристики ползучести могут различаться по критерию временной длительности.
Соответственно этому ползучесть бывает
- Длительной. Характеристики этого вида ползучести определяются нагрузками на жаропрочную сталь для печи, которые продолжаются долгое время. Наибольшее напряжение за период времени, которое разрушает разогретый материал, определяет предел ползучести.
- Кратковременной. Испытания для ее определения проводят в печи, которую нагревают до определенного уровня, и оказывают на металл растягивающую нагрузку в течение короткого времени.
Ползучесть описывается определенным графиком кривой, на котором прослеживаются различные стадии
Высокое сопротивление ползучести — один из факторов жаропрочности.
Предел ползучести – это уровень напряжения, при котором за время, специально заданное, достигается определенная деформация.
Эти расчеты принимаются во внимание в различных видах машиностроения: в авиационном моторостроении за такое время принимается величина 100-200 часов.
Жаропрочностью отличаются сплавы, содержащие Cr и Ni (хромоникелевые), а также содержащие Cr, Ni, Mn (хромоникелевомарганцевые). Эта характеристика проявляется следующим образом: при нагревании они не демонстрируют качество ползучести
2 Коррозионно-, жаро- и хладостойкие аустенитные сплавы
Разнообразие добавок позволяет создавать особые аустенитные стали, которые используются для изготовления деталей для конструкций, работающих в высокотемпературных, коррозионных и криогенных условиях. Исходя из этого, аустенитные составы и подразделяют на разные группы:
- жаропрочные и жаростойкие стали;
- коррозионностойкие;
- хладостойкие.
Жаростойкие составы не разрушаются при воздействии на них химической среды. Их можно применять при температурах до +1150 градусов. Из таких сталей изготавливают разнообразные слабонагруженные изделия:
- элементы газопроводных систем;
- арматуру для печного оборудования;
- нагревательные детали.
Жаропрочные марки сталей могут достаточно долго сопротивляться нагрузкам в высокотемпературных условиях, сохраняя при этом свои изначально высокие механические характеристики. Их обязательно легируют вольфрамом и молибденом (каждая из присадок может содержаться в стальной композиции в количестве до семи процентов). А для измельчения зерна в некоторые аустенитные сплавы вводят в небольших количествах бор.
Обозначим часто встречающиеся марки жаростойких и жаропрочных сталей описываемого в статье класса: Х15Н35ВТР, 10Х12Н20Т3Р, 40Х18Н25С2, 1Х15Н25М6А, 20X23H13, 10X15H18B4T, 10Х16Н14В2БР, 10X18H12T, 08Х16Н9М2, 10Х15Н35ВТ, 20Х25Н20С2, 1Х15Н25М6А, 20X23H13, 10X15H18B4T, 10Х16Н14В2БР, 10X18H12T.
Аустенитные нержавеющие стали (то есть коррозионностойкие) характеризуются малым содержанием углерода (не допускается наличия свыше 0,12 процентов этого химического элемента). Никеля в них может быть от 8 до 30 %, а хрома от 12 до 18%. Любая аустенитная нержавеющая сталь проходит термическую обработку (отпуск, закалку или отжиг стали). Термообработка необходима для того, чтобы изделия из нержавейки хорошо «чувствовали» себя в разных агрессивных средах – в щелочных, газовых, жидкометаллических, кислотных при температурах от +20 градусов и больше.
Наиболее известны следующие марки аустенитных коррозионностойких сталей:
- хромоникельмолибденовые: 03Х21Н21М4ГБ, 08Х17Н15М3Т, 08X17Н13M2T, 03X16H15M3, 10Х17Н13М3Т;
- хромомарганцевые: 07Х21Г7AН5, 10X14AГ15, 10X14Г14H4T;
- хромоникелевые: 08Х18Н12Б, 03Х18Н11, 08X18H10T, 06X18Н11, 12X18H10T, 08X18H10;
- с большим содержанием кремния (от 3,8 до 6,7 %): 15Х18Н12C4Т10, 02Х8Н22С6.
Применение
Стальные материалы жаропрочного класса широко применимы в различных областях экономики.
Это сферы энергетики, нефтехимии, химическом производстве, авиастроении и автомобилестроении, других направлениях машиностроительной отрасли.
Для технических целей все материалы делят на несколько видов:
- Сплав жаропрочный.
- Сталь жаропрочная низколегированная.
- Сталь жаропрочная высоколегированная. Рабочие температуры
- Сплавы жаропрочные релаксационностойкие с наиболее малой ползучестью и хорошими показателями упругости.
В нормативных документах ГОСТ, указывается примерное целевое назначение жаропрочных материалов в разных видах производственных процессов:
- Роторных конструкций и валов.
- Болтов и гаек.
- Фланцев и поковок общего и специального назначения.
- Высоконагруженные детали, штуцера.
- Прутков и шпилек.
- Крепежа и крепежных элементов.
- Листовых деталей и сортовых заготовок.
- Труб разного профиля и предназначения в условиях высокого давления и высоких температур.
- Детали выхлопных систем.
- Теплообменное оборудование.
- Дисковых компонентов высокотемпературных установок, компрессоров.
- Корпусов камер сгорания и дефлекторов.
- Арматурные конструкции.
- Стали и сплавы. Марочник. Справ. изд./ В. Г. Сорокин и др. Науч. С77. В. Г. Сорокин, М. А. Гервасьев — М.: «Интермет Инжиниринг», 2001.
- Gusev A. I., Rempel A. A. Nanocrystalline Materials. — Cambridge: Cambridge International Science Publishing, 2004.
- Скороходов В. Н., Одесский П. Д., Рудченко А. В. «Строительная сталь»
Марки жаростойких и жаропрочных сталей
В зависимости от состояния структуры различают аустенитные, мартенситные, перлитные и мартенситно-ферритные жаропрочные металлы. Жаростойкие сплавы разделяются на ферритные, мартенситные или аустенитно-ферритные виды.
Применение мартенситных сталей. | |
Марки стали | Изделия из жаропрочных сталей |
4Х9С2 | Клапаны автомобильных двигателей, рабочая температура 850–950 ºC. |
1Х12H2ВМФ, Х6СМ, Х5М, 1Х8ВФ, Х5ВФ | Узлы, детали, работающие при температуре до 600 ºC на протяжении 1000–10000 часов. |
Х5 | Трубы, эксплуатируемые при рабочей температуре до 650 ºC. |
1Х8ВФ | Элементы паровых турбин, которые работают при температуре до 500 ºC на протяжении 10000 часов и более. |
Перлитные марки, имеющие хромокремнистый и хромомолибденовый состав жаропрочной стали: Х13Н7С2, Х10С2М, Х6СМ, Х7СМ, Х9С2, Х6С. Хромомолибденовые составы 12МХ, 12ХМ, 15ХМ, 20ХМЛ подходят для использования при 450-550 °С, хромомолибденованадиевые 12Х1МФ, 15Х1М1Ф, 15Х1М1ФЛ – при температуре 550-600 °С. Их применяют при производстве турбин, запорной арматуры, корпусов аппаратов, паропроводов, трубопроводов, котлов.
Ферритная сталь изготавливается путем обжига и термообработки, за счет чего приобретает мелкозернистую структуру. Сюда относят марки Х28, Х18СЮ, 0Х17Т, Х17, Х25Т, 1Х12СЮ. Содержание хрома в таких сплавах 25-33 %. Их применяют на производстве теплообменников, аппаратуры для химических производств (пиролизного оборудования), печного оборудования и прочих конструкций, которые работают длительное время при высокой температуре и не подвержены воздействию серьезных нагрузок. Чем больше хрома в составе, тем выше температура, при которой сталь сохраняет эксплуатационные свойства. Жаростойкая ферритная сталь не обладает высокой прочностью, жаропрочностью, отличается хорошей пластичностью и неплохими технологическими параметрами.
Мартенситно-ферритная сталь содержит 10-14 % хрома, легирующие добавки ванадий, молибден, вольфрам. Материал используется при изготовлении элементов машин, паровых турбин, оборудования АЭС, теплообменников атомных и тепловых ЭС, деталей, предназначенных для длительной эксплуатации при 600 ºC. Марки сталей: 1Х13, Х17, Х25Т, 1Х12В2МФ, Х6СЮ, 2Х12ВМБФР.
Аустенитные стали отличаются широким применением в промышленности. Жаропрочностные и жаростойкие характеристики материала обеспечиваются за счет никеля и хрома, легирующих добавок (титан, ниобий). Такие стали сохраняют технические свойства, стойкие к коррозии при воздействии температуры до 1000 ºC. Сравнительно со сталями ферритного класса, аустенитные сплавы обладают повышенной жаропрочностью, способностью к штамповке, вытяжке, свариванию. Термическая обработка металлов осуществляется путем закалки при 1000–1050 °С.
Применение аустенитных марок. | |
Марки стали | Применение жаропрочных сталей |
08X18Н9Т, 12Х18Н9Т, 20Х25Н20С2, 12Х18Н9 | Выхлопные системы, листовые, сортовые детали, трубы, работающие при невысокой нагрузке и температуре до 600–800 °С. |
36Х18Н25С2 | Печные контейнеры, арматура, эксплуатируемые при температуре до 1100 °С. |
Х12Н20Т3Р, 4Х12Н8Г8МФБ | Клапаны двигателей, детали турбин. |
Аустенитно-ферритные стали отличаются повышенной жаропрочностью по сравнению с обычными высокохромистыми сплавами. Такие металлы применяются при изготовлении ненагруженных изделий, рабочая температура 1150 ºC. Из марки Х23Н13 изготавливают пирометрические трубки, из марки Х20Н14С2, 0Х20Н14С2 – печные конвейеры, резервуары для цементации, труб
Жаростойкие и жаропрочные сплавы обладают высокой жаропрочностью и жаростойкостью, что определяет их применение в качестве конструкционных материалов для изготовления изделий с повышенными требованиями к механической прочности и коррозионной стойкости при высоких температурах. На странице представлено описание данных сплавов: свойства, области применения, марки жаростойких и жаропрочных сплавов, виды продукции. |
Тугоплавкие металлы и сплавы
Если в производстве необходимы детали предположительная среда работы, которых будет тысяча или даже две тысячи градусов, то при сплаве нужно использовать тугоплавкие металлы.
Элементы, которые используются и температура их плавления такова:
- вольфрам (3410°С);
- тантал (3000°С);
- ниобий (2415°С);
- ванадий (1900°С);
- цирконий (1855°С);
- рений (3180°С);
- молибден (2600°С);
- гафний (2000°С).
Деформируются данные металлы при нагреве, потому что высокая температура провоцирует их изменение в хрупкое состояние. Их волокнистая структура формируется при нагревании до состояния рекристаллизации тугоплавких металлов. Жаропрочность увеличивается за счёт смесей из специальных добавок. А от окисления при температуре свыше тысячи градусов эти материалы защищают добавки из титана, тантала и молибдена.
Так, путём сплавов разных элементов можно добиться нужных качеств жаропрочных материалов, которые можно использовать в самых разнообразных производствах для работы в разных температурных средах.
4 Аустенитно-ферритные и аустенитные жаростойкие сплавы
Наибольшей востребованностью пользуются аустенитные стали, структура коих обеспечивается наличием никеля, а жаростойкость – наличием хрома. В подобных композициях иногда встречаются незначительные включения ниобия и титана, углерода в них очень мало. Аустенитные марки при температурах до 1000° успешно противостоят процессу появления окалины и при этом относятся к группе антикоррозионных сталей.
Сейчас чаще всего предприятия используют описываемые материалы, относимые к дисперсионно-твердеющей категории. Их делят на два вида в зависимости от варианта применяемого упрочнителя – интерметаллического либо карбидного. Именно процедура упрочнения придает аустенитным сталям особые свойства, так востребованные промышленностью. Известные сплавы данной группы:
- дисперсионно-твердеющие: 0Х14Н28В3Т3ЮР, Х12Н20Т3Р, 4Х12Н8Г8МФБ, 4Х14Н14В2М (оптимальны для изготовления клапанов двигателей транспортных средств и деталей турбин);
- гомогенные: 1Х14Н16Б, Х25Н20C2, Х23Н18, Х18Н10T, Х25Н16Г7АР, Х18Н12T, 1Х14Н18В2Б (указанные марки находят свое применение в сфере выпуска арматуры и труб, работающих при больших нагрузках, элементов выхлопных систем, агрегатов сверхвысокого давления).
Аустенитно-ферритные сплавы имеют очень высокую жаропрочность, которая намного больше обычных высокохромистых материалов. Достигается это за счет уникальной стабильности их строения. Такие марки стали нельзя применять для производства нагруженных компонентов из-за их повышенной хрупкости. Зато они прекрасно подходят для изготовления изделий, функционирующих при температурах близких к 1150 °С:
- пирометрических трубок (марка – Х23Н13);
- печных конвейеров, труб, емкостей для цементации (Х20Н14С2 и 0Х20Н14С2).