Содержание
- 1 Причины и последствия импульсных перенапряжений сети
- 2 Схемы подключения
- 3 Как найти место где искрит и почему выбивает дугозащита
- 4 Конструкция
- 5 Какой фирмы лучше купить
- 6 Источники появления импульсной перегрузки и ее действие на электросеть
- 7 Пошаговая инструкция: как правильно паять пластиковые трубы в домашних условиях
- 8 Схемы подключения
- 9 Что такое УЗИП и от чего оно защищает?
- 10 Но я слышал, что TVS-диоды имеют высокий ток утечки, который ухудшит производительность моей системы
- 11 Как защититься от перепадов?
- 12 Аппликация Поезд из бумаги
- 13 Вырезалка горилла
- 14 Лучшие модели III класса
- 15 Устройство защиты от импульсных перенапряжений (УЗИП)
- 16 Основные устройства системы защиты
- 17 Стандарт напряжения сети
- 18 Классы стойкости электропроводки
- 19 Какие бывают
- 20 Причины возникновения импульсного перенапряжения
- 21 Источники возникновения импульсных помех
- 22 Автоматы или предохранители перед УЗИП
- 23 Заключение
Причины и последствия импульсных перенапряжений сети
Импульсные перенапряжения представляют угрозу для бытовых электроприборов. Причины данного явления делятся на 2 категории:
- Атмосферные перенапряжения (молнии). Разряд попадает в линию электропередач. Затем высокий потенциал следует до розеток потребителей и выводит домашнюю электронику из строя.
- Техногенные перенапряжения. Неисправность контура молниезащиты. Пробой изоляции между сетями высокого и низкого напряжения.
Независимо от причины, в квартирных розетках формируется разность потенциалов в несколько тысяч вольт. Импульс длится доли секунды. Но этого достаточно чтобы повредить чувствительные электронные платы, микросхемы и процессоры.
Схемы подключения
Для подключения защитного устройства недостаточно ознакомления с его характеристиками. Дополнительно следует учесть и параметры питающей сети. В странах СНГ наиболее распространены такие ее виды:
- однофазная, TN-S;
- однофазная, TN-C;
- трехфазная, TN-S;
- трехфазная, TN-C;
УЗИП с однофазным питанием и системе TN-S
На картинке ниже представлена схема подключения. УЗИП включается после вводного автоматического выключателя. Как фазный, так и нулевой провод, на защитное устройство поступает с автомата. Заземляющий же проводник идет с PE клеммника.
УЗИП с однофазным питанием по системе TN-C
Применяется однополюсной прибор. Заземляющий проводник отсутствует. Поэтому устройство защиты от перенапряжений подключается между фазным и нулевым. При критическом скачке напряжения в L проводе лишний ток, минуя квартиру, потечет в N провод.
УЗИП с трехфазным питанием и по системе TN-S
Устройство защиты устанавливается после вводного автомата. Если поставить его после счетчика, то в случае удара молнии дорогой прибор учета выйдет из строя. Все 3 фазы поступают на УЗИП в соответствии с маркировкой его клемм. При таком подключении стабильность напряжения контролируется не только между фазой и землей, но и между отдельными фазами.
УЗИП с трехфазным питанием по системе TN-C
В трехфазной сети желательно использовать модульное устройство защиты на 3 полюса. Но при необходимости допустимо воспользоваться и 3 однофазными УЗИП. Независимо от комплектации уровень напряжения будет контролироваться между всеми фазными проводниками и нулем.
Как найти место где искрит и почему выбивает дугозащита
Допустим устройство у вас сработало и все отключилось. Как найти место где возникла дуга и появились искры? Если у вас двухэтажный особняк с полсотней розеток, куда бежать в первую очередь и как узнать эту очередность?
Тут вам поможет ваш электрощиток. Чем больше в нем будет групп и автоматов, тем лучше.
Каждый автомат отвечает за определенную комнату или зону в доме. Отключаете их все скопом, после чего включаете УЗДП.
Далее по одному начинаете включать автоматические выключатели. Причем после включения каждого автомата выжидаете минимум по 10 секунд и только потом переходите к другому.
Имейте в виду, что в цепи должны быть подключены все приборы, которые работали до этого. Кроме того, они должны быть под нагрузкой, а не на холостом ходу. Иначе при токе до 2,5А устройство защиты от дуги может не сработать.
При включении дефектной линии дугозащита должна вновь отключить ее. Тем самым, вы определите проблемную зону или группу. Допустим это кухня.
Отправляете туда жену, чтобы она наблюдала, а вы тем временем вновь запускаете автомат. Визуально или по звуку можно будет установить место искрения.
А если все равно ничего не видно и не слышно? Тогда действуйте следующим образом. Начните поочередно выключать из розеток все приборы на этой линии.
Если УЗИС все равно срабатывает, то причина в самой проводке, а если нет, то виноват какой-то из отключенных приборов или конкретная розетка.
Включите в эту розетку другой прибор и посмотрите что изменится.
Конструкция
Кроме основного элемента — варистора с нелинейными характеристиками, ограничитель перенапряжения отличает специальный корпус из фарфора или полимера. Сам варистор изготавливается в большинстве случаев из вилитовых дисков (из особого керамического состава с основой в виде оксидов цинка со специальными добавками). Диски покрываются изолирующей обмазкой и устанавливаются в корпусе.
В зависимости от условий эксплуатации ограничители перенапряжения могут иметь различные исполнения.
- Для установки на линиях электропередач и защиты оборудования на промышленных объектах.
- Защита от пиковых импульсов бытового оборудования дома или квартиры обеспечивается компактными, с привлекательным дизайном устройствами.
На изображении цифрами обозначены следующие конструктивные элементы:
- 1 — корпус;
- 2 — предохранитель, срабатывающий после прохождения импульса напряжения, с параметрами силы тока короткого замыкания;
- 3 — варисторный модуль, легко сменяемый без отключения базового элемента;
- 4 — индикатор, показывающий текущий ресурс работы устройства;
- 5 — насечки на контактных зажимах, увеличивающие плотность и площадь соприкосновения с целью предотвращения оплавления проводов в результате нагрева.
Какой фирмы лучше купить
Стоит отметить, что рынок переполнен уже готовыми щитками, которые могут включать в себя одновременно несколько описанных выше модулей защиты от импульсных перенапряжений. Классы применяются разные, в зависимости от компании (торговой марки), рынка сбыта и целевой аудитории. Крепление агрегата производится на стене (в щитке), а подключение осуществляется непосредственно к имеющейся проводке.
На окончательной стоимости отразится не только надежность конструкции, но и наценка за «бренд». Бюджетные модели относятся к категории наиболее распространенных ошибок при выборе подобного оборудования. Не стоит экономить за собственной безопасности. Лучше отдать предпочтение проверенным фирмам и брендовым моделям, которые успели получить многочисленные положительные отзывы от покупателей. Чем лучше зарекомендовал себя на рынке производитель, тем выше будет и стоимость продукта.
Рейтинг производителей выглядит следующим образом:
- ABB.
- Hakel.
- OBO Bettermann.
- Schneider Electric.
- Phoenix Contact.
- Citel.
- Dehn.
Источники появления импульсной перегрузки и ее действие на электросеть
Перед началом грозы предусмотрительные и осторожные люди отключают из сети мало-мальски ценную бытовую технику. Многие этим простым правилом пренебрегают, рассчитывая на систему защиты электроприборов. Это не очень предусмотрительно и чревато выходом их из строя.
Импульсное перенапряжение может иметь как природный, так и техногенный характер. В первом случае причиной перегрузки является удар молнии в линию электропередач, причем не обязательно находящуюся непосредственно рядом с домом. Достаточно ее попадания в ЛЭП на расстоянии в несколько километров от потребителя.
Перегрузки техногенного характера, в отличие от природных, сложнее спрогнозировать, происходят они внезапно. Причина их возникновения – повреждение либо работа подстанции в нештатном режиме. Они длятся непродолжительный промежуток времени и могут оставаться незамеченными.
Современные электроприборы рассчитаны на броски питания до 1 кВ, но если этот лимит превышен, сгорают блоки питания, происходят короткие замыкания в сети и даже пожары.
Пошаговая инструкция: как правильно паять пластиковые трубы в домашних условиях
Схемы подключения
Вот основные схемы подключения УЗИП в зависимости от исполнения систем заземления на примере моделей от Schneider Electric. Схема подключения однофазного УЗИП в системе TT или TN-S:
Здесь самое главное не перепутать место подключения вставного картриджа N-PE. Если воткнете его на фазу, создадите короткое замыкание.
Схема трехфазного УЗИП в системе TT или TN-S:
Схема подключения 3-х фазного устройства в системе TN-C:
На что нужно обратить внимание? Помимо правильного подключения нулевого и фазного проводников немаловажную роль играет длина этих самых проводов. От точки подключения в клемме устройства до заземляющей шинки, суммарная длина проводников должны быть не более 50см!
От точки подключения в клемме устройства до заземляющей шинки, суммарная длина проводников должны быть не более 50см!
А вот подобные схемы для УЗИП от ABB OVR. Однофазный вариант:
Трехфазная схема:
Давайте пройдемся по некоторым схемкам отдельно. В схеме TN-C, где мы имеем совмещенные защитный и нулевой проводники, наиболее распространенный вариант решения защиты – установка УЗИП между фазой и землей.
Каждая фаза подключается через самостоятельное устройство и срабатывает независимо от других.
В варианте сети TN-S, где уже произошло разделение нейтрального и защитного проводника, схема похожа, однако здесь монтируется еще дополнительный модуль между нулем и землей. Фактически на него и сваливается весь основной удар.
Именно поэтому при выборе и подключении варианта УЗИП N-PE, указываются отдельные характеристики по импульсному току. И они обычно больше, чем значения по фазному.
Помимо этого не забывайте, что защита от грозы это не только правильно подобранный УЗИП. Это целый комплекс мероприятий.
Их можно использовать как с применением молниезащиты на крыше дома, так и без нее.
Особое внимание стоит уделить качественному контуру заземления. Одного уголка или штыря забитого в землю на глубину 2 метра здесь будет явно не достаточно
Хорошее сопротивление заземления должно составлять 4 Ом.
Что такое УЗИП и от чего оно защищает?
УЗИП – это устройство, которое защищает оборудование и эл.приборы в сети 220-380В от импульсных перенапряжений.
При этом не путайте импульсное перенапряжение, просто с повышенным, которое возникает при аварийных ситуациях – обрыве ноля или попадании фазы на нулевой проводник.
Импульсное длится не более 1 миллисекунды.
Никакое реле напряжения за это время отработать не успевает.
Помимо аббревиатуры УЗИП можно встретить и другие распространенные названия. Например, ОПС – ограничитель перенапряжения сети или ОИН – ограничитель импульсных напряжений.
Несмотря на разные названия, функциональное назначение у всех этих устройств одинаковая. Они должны выполнять две главные задачи:
защищать оборудование от последствий удара молнии
Причем не обязательно от прямого попадания, но и от возникающих “наводок” и импульсных разрядов при грозе.
От них выйти из строя могут не только работающие приборы, но и “спящие”.
То есть те, которые просто воткнуты в розетку – TV, холодильники, зарядки.
защищать от перенапряжений при коммутациях
Как сами понимаете, говорить об актуальности монтажа УЗИП в этом случае нужно не только для частных домов, но и для квартир в многоэтажках. Данная коммутация будет сопровождаться кратковременным импульсом, который спалит вам электронные компоненты телевизора, стиральной машинки или компьютера.
От всего от этого ни УЗО, ни диффавтоматы, ни реле напряжения не помогут.
А вот УЗИП реально спасет дорогостоящие приборы. Иногда такие импульсы не приводят к капитальной поломке, зато сопровождаются “зависанием” системы, потерей памяти и т.п. А это опять дополнительные расходы на ремонт, наладку и обслуживание.
Если взять все домашние электроприборы и разбить их на категории электрической стойкости к импульсам напряжения, то получится следующая табличка:
Но я слышал, что TVS-диоды имеют высокий ток утечки, который ухудшит производительность моей системы
В области аналоговой электроники бытует общепринятое мнение, что TVS-диоды имеют весьма высокие токи утечки и, следовательно, не могут использоваться в прецизионных аналоговых входных каскадах. Это утверждение не обязательно ошибочно. Действительно, многие спецификации на TVS-диоды показывают ток утечки, не превышающий 100 мкА, но это значение является довольно высоким для большинства аналоговых входных каскадов. Проблема здесь заключается в том, что ток утечки берется при максимальном рабочем напряжении и при максимальной температуре (+150 °C). В этом случае диод будет иметь высокий ток утечки. Все TVS-диоды в силу своей природы начинают увеличивать ток утечки при температурах, превышающих +85 °C. Так что если вы выбираете TVS-диод с оптимально высоким рабочим напряжением и не планируете использовать ваш конечный продукт на температурах, значительно превышающих +85 °C, то в реальности можно ожидать гораздо меньших, некритических токов утечки.
Вы можете удивиться, увидев, насколько незначительным будет ток утечки, связанный с TVS-диодом, если вы правильно его выберете. На рис. 7 показаны данные измерения утечки 12 TVS-диодов одного типа.
Рис. 7. Ток утечка 36-В двунаправленных диодов TVS-диодов T36SC компании Bournes с использованием оценочной платы ADA4530 с экранированием и резистором номиналом 10 ГОм при температуре 25 °C
Из двенадцати измеренных TVS-диодов при смещении постоянного тока 5 В у наихудшего из них был ток утечки 7 пА. Это более чем в 10 млн раз лучше, нежели при наихудшем сценарии согласно спецификации. Естественно, здесь с точки зрения токов утечки имеются различия от партии к партии диодов, но это должно по крайней мере иллюстрировать порядок того, чего можно ожидать. Если наша система не будет эксплуатироваться при температурах выше +85 °C, то TVS-диоды могут оказаться весьма неплохим вариантом. Просто не забудьте проверить ток утечки, если выбираете другие продукты, а не те, которые были специально здесь протестированы. То, что может быть правдой для одного типа радиоэлемента или производителя, не всегда соответствует действительности для других.
Как защититься от перепадов?
А что же защита от перепадов напряжения? Что-то же стоит там, в лестничном щитке, – спросите вы. А ничего там для этого не стоит, – отвечу я. Там предусмотрены либо морально устаревшие «пробки» (если дом уже ветхий), либо автоматические выключатели, которые защищают квартирную проводку от перегрузок по току.
Заметьте, что ключевые слова тут: «квартирную проводку». Знаете почему? Потому что забота об электроприборах – дело их хозяев. То есть наше с вами. Автоматический выключатель бережет проводку от токовой перегрузки, квартиру от пожара, а вот от повышенного или пониженного напряжения оберегать бытовую и дорогостоящую мультимедийную технику никто не обещал.
Значит устройство защиты бытовой электрики от перепадов напряжения целиком наша забота, поэтому будем этим заниматься. А для этого необходимы знания. Разберёмся, какие в нашем распоряжении есть средства.
Сетевые фильтры
Самым доступным способом уберечь технику от скачков напряжения является подключение её к сети не через розетки, а с помощью специальных сетевых фильтров, которые внешне очень похожи на удлинители, но стоят существенно дороже…
Дело во внутренней начинке фильтра. Настоящий сетевой фильтр содержит варистор, предохраняющий нагрузку от импульсных перенапряжений, которые, в свою очередь, возникают в сети от самых разных причин: от включения или выключения мощных потребителей электроэнергии до разряда молнии.
В качественном фильтре есть и режектор, снижающий влияние высокочастотных помех, и электронный блок, защищающий от повышения напряжения, и обычная плавкая вставка от перегрузки по току (короткого замыкания).
Стабилизаторы напряжения
Защита от перепадов напряжения – основное занятие и для стабилизатора напряжения.
Стоят стабилизаторы напряжения в разы дороже сетевых фильтров, но и функционал у них шире.
Фильтр не может повысить или понизить напряжение. Только стабилизатор справится с такой задачей.
Источники бесперебойного питания
Теперь перейдём к ещё одному способу защиты от отключения электроэнергии. Речь пойдет об источниках бесперебойного питания или сокращенно ИБП.
Конечно, у них есть свои недостатки, но сейчас обратим своё внимание на то, что один из самых дорогих электронных приборов в каждом (где есть) доме – компьютер не может нормально работать без ИБП (за рубежом UPS). Как мне думается, это говорит о многом
Обеспечивая, как аккумулятор, бесперебойное снабжение потребителей высококачественной электроэнергией, отдельные ИБП могут выполнять и другие, весьма полезные, функции. Так, UPS может с успехом заменить стабилизатор, выравнивая и стабилизируя сетевое напряжение.
Чаще всего, их используют как устройство защиты от перепадов напряжения при электроснабжении автоматики отопительных котлов. Имея небольшое электропотребление, котлы нуждаются в постоянном электропитании, для своей безопасной работы. Высокая надёжность, долгое время работы в отключенном от сети состоянии, бесшумность и лёгкость подключения – снискали ИБП большую популярность в этом сегменте.
Аппликация Поезд из бумаги
Вырезалка горилла
Лучшие модели III класса
РИФ-Э-III 320/3 (3+1)
Продукт относится к третьему классу и способен защитить приборы от высоких скачков напряжения. Монтируется на рейку. Много места не занимает. Зачастую устанавливается на однофазные сети, однако присутствует возможность парного подключения в комплексе с устройствами защитного отключения. Таким образом, удалось повысить показатель эффективности этой модели. Корпус пластиковый стандартной формы.
Комплект обойдется покупателю в 3 тыс. руб.
РИФ-Э-III 320/3 (3+1)
Достоинства:
- возможность совмещения нескольких устройств;
- долговечность;
- высокий уровень безопасности;
- безотказность;
- эффективность;
- практичность.
Недостатки:
не выявлены.
Альбатрос УЗИП 220/1000 АС
Устройство относится к третьему классу. Для срабатывания понадобится порядка 25 нс. Показатель импульсного разрядного тока (максимального) – 8/20 мкс. Нормально функционирует при температуре от -40°С до +50°С. Может устанавливаться на улице. Класс защиты – ip65. Ограничивающий тип оборудования предназначен для защиты оборудования от несимметричных перенапряжений, остаточных бросков и отвода импульсов тока в однофазной сети.
Используется для защиты:
- Светодиодных осветительных приборов.
- Садово-парковых осветительных приборов.
- Высокомачтовых светильников.
- Архитектурных осветительных приборов.
- Уличного освещения.
Стоимость комплекта – 1000 руб.
Альбатрос УЗИП 220/1000 АС
Достоинства:
- дополнительная защита фаза-нейтраль, нейтраль-земля и фаза-земля;
- широкий рабочий диапазон;
- полностью герметичный корпус;
- компактность.
Недостатки:
небольшой эксплуатационный срок.
OptiDin OM-I-3+Nu-280/12.5/R
Тип питающей сети – трехфазная. Используемые полюса – 3P+N. Устройство защиты от перенапряжения всех классов. Габариты: 97/70/70,5 мм. Показатель номинального напряжения 230 В. Импульсный ток 10/350 кА. Допустимый разряд тока (максимальный и номинальный) — 8/20 кА.
Стоимость изделия – 18 тыс. руб.
OptiDin OM-I-3+Nu-280/12.5/R
Достоинства:
- рабочий диапазон от -40°С до +70°С;
- внешние проводники имеют передний тип подключения;
- класс испытаний I, II и III;
- эффективность;
- присутствует сигнализация удаленного типа;
- долговечность.
Недостатки:
- функция остаточного гашения тока отсутствует;
- индикатор состояния износа также отсутствует.
OBO Bettermann V10 Compact 385
Качественное оборудование от немецкого концерна, монтаж которого осуществляется непосредственно на рейку (DIN). Это способствует сохранению дополнительного пространства. Конструкция имеет класс II+III. Внутри размещен варистор высокой мощности. Также установлена динамическая и термическая защита – предохранитель. Имеет уровень защищенности – ip20.
Цена набора – 13 тыс. руб.
OBO Bettermann V10 Compact 385
Достоинства:
- защитное напряжение 1500 В;
- приемлемая стоимость;
- компактность;
- качественность.
Недостатки:
распространены подделки.
Устройство защиты от импульсных перенапряжений (УЗИП)
Различают УЗИП — варисторы и разрядники различных конструкций, обычно имеющие индикаторы, подающие сигнал об отключении. Варисторы обладают определенными недостатками: после срабатывания они должны остыть, что снижает уровень готовности грозозащиты при неоднократных ударах молний. Они крепятся на DIN-рейку, поэтому их легко заменить в случае необходимости.
Защита от перенапряжения и надежность применения устройства зависит от эффективности заземления с равными потенциалами TN-S или TN-CS, разделением защитного и 0-провода. УЗИП устанавливают с шагом 10 м по кабелю, чем обеспечивается расчетная последовательность срабатывания УЗИП.
На воздушных линях УЗИП устанавливается из разрядников и плавких вставок, в общем домовом щитке — варисторы кл. I, II, а на этажах — III кл. При необходимости дополнительной защиты розетки оборудуют в виде сетевых удлинителей.
Основные устройства системы защиты
Один из лучших способов спасти электросеть от скачков напряжения – монтаж стабилизатора, подходящего по техническим характеристикам. Это недешевые устройства, и не всегда они используются, поскольку напряжение в сетях и так бывает достаточно стабильным.
Также устранить нестабильность в работе сети помогают реле контроля напряжения. При обрыве нулевой жилы и замыкании в провисших кабелях такое реле способно включить защитные функции даже быстрее стабилизатора, нужно лишь 2-3 миллисекунды.
Реле контроля напряжения помогает справиться с импульсами в сети
Такие реле очень компактны – для монтажа они требуют меньше места, чем стабилизаторы, легко ставятся на простейшую din-рейку, кабеля подключаются элементарно (в отличие от монтажа стабилизаторов, когда вынужденно вклиниваются в электросеть или устанавливают особый короб для него). Стабилизаторы заметно гудят, поэтому в жилых помещениях их устанавливать нежелательно, а вот реле работают практически бесшумно. Кроме того, аппараты, контролирующие разность электрических потенциалов, потребляют очень мало электричества. Цена на такие реле в несколько раз ниже тех, что сложились на стабилизаторы.
Принцип работы реле контроля состоит в том, что при постоянном поступлении электротока устройство определяет разность потенциалов и сравнивает ее с допустимыми значениями. Если показатели в норме, ключи остаются открытыми, и ток продолжает течь по сети. Если же проходит мощный импульс, происходит моментальное закрытие ключей и отключение подачи электроэнергии потребителям. Такая быстрая и однозначная реакция помогает обезопасить все подключенные бытовые агрегаты.
Дополнительная информация. Возвращение в штатный режим происходит с некоторой задержкой, регулируемой таймером. Это необходимо для того, чтобы крупные электроприборы, такие как холодильники, кондиционеры и другие, включились с соблюдением правил и технической настройкой.
Подключение реле производится по фазному кабелю, при этом нуль-кабель включается во внутреннюю схему для питания энергией.
Схема подключения реле контроля потенциалов
Имеется два способа: сквозное подключение (по прямой) или с использованием прибора – контрактора для коммуникации. Оптимально подключать релейный механизм до подключения счетчика, чем обеспечится и его защита от перенапряжения. Однако, при наличии на приборе учета пломбы придется монтировать реле за ним.
Импульсные перенапряжения в электросети частных домов возникают из-за грозы с молниями или коммутационных скачков. Для безопасности электропроводки применяются специальные устройства УЗИП. Как правило, это ограничители перенапряжений нелинейные (ОПН), стабилизаторы и реле контроля потенциалов. Конечно, обустройство такой системы – мероприятие затратное, однако его стоимость гораздо ниже дорогих электробытовых приборов.
Стандарт напряжения сети
Не всегда в нашей сети наблюдается напряжение равное 220 В, зачастую оно ниже нормы или значительно выше ее. Многие замечали тот момент, когда лампочки ярко вспыхивали или тускнели. По разным причинам электросеть может колебаться от 150 до 380 В и более.
Как результат такое изменение в сети приводит к поломке дорогостоящих электроприборов и техники. Куда дешевле поставить схему защиты от перенапряжения. Стандартное напряжение однофазной сети должно быть 220 В ±10% или 198 – 242 В. Стандарт трехфазной сети будет 380 В ±10% или 342 – 418 В, при которых гарантируется нормальная работа оборудования.
Классы стойкости электропроводки
Все электроприборы в бытовых зданиях разделяется по четырем основным категориям, в зависимости от максимально выдерживаемого перенапряжения:
- IV категория – до 6 киловольт;
- III категория – до 4 киловольт;
- II категория – до 2,5 киловольт;
- I категория – до 1,5 киловольт.
В соответствии с этими категориями выстраивается система защиты, которая сокращенно называется узо (устройство защитного отключения) с защитой от перенапряжения, в целях маркетинга их чаще всего называют ограничителями, используют и другие наименования. Ограничители монтируются по ходу движения возможного импульса. Так, на участке от вводного щитка идет 6-киловольтный импульс, в первой зоне он снижается ограничителем перенапряжения до 4 киловольт, в следующей зоне он падает до 2,5 киловольт, а в жилой зоне с помощью УЗИП III категории потенциал импульса снижают до 1,5 киловольт. Устройства защиты всех классов функционируют в комплексе, последовательно понижая потенциал до нормальных значений, с которыми легко справляется изоляция домашней электропроводки.
Важно! При неисправности хотя бы одного из звеньев этой защитной цепочки может возникнуть электропробой в изоляции, что приведет к выходу конечного электроприбора из строя. Поэтому необходимо периодически проверять исправность каждого элемента устройств защитного отключения
Какие бывают
Критериев выбора подобного оборудования несколько, однако, основным принято считать соответствие выбранного агрегата имеющимся ГОСТам, а именно №51992-2011, который имеет ссылку на международный документ «МЭК 61643-1-2005». В нем описываются основные виды УЗИП
На что обратить внимание при покупке УЗИП, и какие критерии выбора следует учитывать при приобретении охранительного оборудования? Предлагаем ознакомиться с информацией, изложенной в таблице
Тип | Рекомендации по использованию | Области применения |
---|---|---|
I класс | Монтаж производится в ГРЩ или ВРУ на вводе в здание. Рекомендовано к использованию при обустройстве ВРУ промышленных и административных зданий, а также многоквартирных и жилых домов. | Также имеет обозначение «В». Используется в качестве защиты от попадания молнии в систему, коммутационных и атмосферных перенапряжений. Как для отдельно стоящих, так и для подключаемых к воздушным линиям зданий устанавливается отдельное устройство. Также, по мнению не только покупателей, но и специалистов, такой тип оборудования требуется для зданий с установленным молниеотводом и сооружений с высоким риском косвенных и прямых грозовых воздействий. Номинальный показатель разрядного тока – 30-60 кА. Номинальная форма волны – 10/350 мкс. |
II класс | Монтаж осуществляется в распределительных щитках офисов и квартир. Основной функцией является защита от остаточных импульсов, которые не были нейтрализованы прибором первого класса. | Также имеет обозначение «С». Используется для защиты сооружений от остатков коммуникационных и атмосферных перенапряжений, которые прошли сквозь устройства первого типа. Номинальный показатель разрядного тока – 20-40 кА. Номинальная форма волны – 8/20 мкс. |
III класс | Применяется для ограды «чувствительных» к перепадам оборудованию (ноутбуки, холодильники, телевизоры). Зачастую применяется в комплексе с медицинским оборудованием и ИТ. | Имеет обозначение «D». Используется для защиты системы от остатков перенапряжений коммутационного и атмосферного типа, которые прошли через устройство второго типа. Место установки – розетки, разветвительные коробки и электрическое оборудование. Примером могут служить системы управления освещением и персональные компьютеры. Номинальный показатель разрядного тока – 5-10 кА. Номинальная форма волны – 8/20 мкс. |
Причины возникновения импульсного перенапряжения
ИП может происходить как по технологическим, так и по природным причинам. В первом случае резкий перепад разности потенциалов происходит, когда на трансформаторной подстанции, откуда идет питание конкретной линии, возникает коммутационная перегрузка. Импульсное перенапряжение, вызванное природными причинами, случается, когда во время грозы мощный разряд бьет в молниезащиту сооружения или линию электрической передачи. Независимо от того, чем вызван скачок напряжения, он может быть очень опасен для домашней электросети, поэтому для эффективной защиты от него требуется подключить УЗИП.
Источники возникновения импульсных помех
Импульсная помеха (ИП) создается мгновенным всплеском напряжения в электросети с амплитудой более 4–6 тыс. В. ИП бывают в виде одиночного или множества (пачки) чередующихся импульсов. Это самая распространенная «болезнь» электросетей и наносит непоправимый вред электронным компонентам бытовой техники. Защита от ИП — питание оборудования с помощью сетевых фильтров. Другие системы защиты электрооборудования практически не настроены на защиту от ИП, поэтому не могут ее обеспечить.
Различают источники ИП:
- Природные источники — удары молний поблизости с электросетями (воздушными или подземными), зона действия до 20 км.
- Техногенные источники — процессы коммутации в период оперативного управления системами электропередач (включения/выключения) и аварийных ситуаций на трансформаторных подстанциях.
Согласно оперативным данным, наиболее часто встречаются ИП техногенного характера, что объяснимо уровнем изношенности сетей и большой потребительской нагрузкой.
Автоматы или предохранители перед УЗИП
На вводе в любую квартиру в обязательном порядке монтируется устройство защиты от КЗ или перегрузки по току. Раньше применялись пробки (плавкие вставки). Сейчас в ходу автоматические выключатели.
УЗИП монтируется после этих устройств. При превышении напряжения оно замыкает свои контакты. Далее возникает огромный ток короткого замыкания. Если перед УЗИП стоит плавкая вставка, то она перегорит. Ее необходимо будет заменить новой. Если автоматический выключатель, то он сработает, и его достаточно будет просто включить.
В контексте ОИН специалисты рекомендуют именно плавки вставки. Объясняется это простотой их устройства и меньшими рисками перекрытия высоким напряжениям. То есть если под превышенным потенциалом окажется автомат, то есть риск, что внутри него образуется дуга, и он не выполнит защитную функцию. С плавким предохранителем такая опасность минимальна. Однако они обладают меньшей быстротой действия чем автоматы.
Важно! Не следует ремонтировать пробки и изготавливать так называемые «жучки». Это быстро, дешево и просто, но периодически приводит к серьезным последствиям
В идеале лучше иметь пробки на запас или установить автоматические выключатели.
Заключение
В этой статье мы рассказали о том, что же такое УЗИП, каких типов бывают эти устройства и как они классифицируются, а также разобрались с тем, как производится их подключение к защищаемой цепи. Напоследок нужно сказать, что использование этого прибора, в отличие от УЗО, в линии электропитания частного дома обязательным не является. Включение его в сеть в каждом отдельно взятом случае требует учета индивидуальной заземляющей схемы, а также размещения ГЗШ и вводного автомата. Поэтому перед покупкой и установкой УЗИП настоятельно рекомендуем воспользоваться консультацией опытного электрика.