Содержание
- 1 Измерительные
- 2 Что такое трансформатор
- 3 Теория трансформаторов
- 4 Области различных технологий
- 5 Трансформаторы в электроснабжении
- 6 ВЫБОР СИЛОВОГО ТРАНСФОРМАТОРА
- 7 Условные обозначения трансформаторов
- 8 Особенности конструкции
- 9 Общее устройство и принцип работы
- 10 Конструкция
- 11 ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ
- 12 Импульсный трансформатор тока
- 13 Особенности установки трансформаторных подстанций в зависимости от их типов
- 14 Принцип действия трансформатора
- 15 Общее устройство и принцип работы
Измерительные
Для использования в электроустановках переменного тока создан специальный вид трансформаторов – измерительный.
Благодаря им увеличиваются пределы измерительных устройств. Кроме того, они позволяют без электрического соединения с силовым проводом провести замер протекающего по нему тока.Другими словами, без гальванической связи имеется возможность контроля протекающего тока в цепи. Но можно выделить два типа измерительных устройств – трансформаторы напряжения и тока.
Существуют различные виды трансформаторов тока, их отличие в габаритах и области применения.Трансформаторы тока позволяют осуществить преобразование. При этом большой ток, протекающий в цепи, снижается до безопасного значения.Причем он на выходе безопасен для систем управления или измерения, устройств сигнализации и защиты. Первичная обмотка – это отрезок проводника, вокруг него проведена намотка вторичной.
С последней снимается ток в 1 или 5 Ампер.А вот трансформаторы напряжения предназначены для иной цели. Они производят понижение напряжения для измерения характеристик. С их помощью осуществляется гальваническая развязказащитных устройств от цепи с высоким напряжением.
Что такое трансформатор
По своей сути, трансформатор является преобразователем электрического тока. Для изменения напряжения используется электромагнитная индукция.
Основные принципы работы данных устройств заключаются в следующем:
- Электрический ток изменяется во времени и создает магнитное поле, подверженное аналогичным изменениям.
- Измененный магнитный поток, проходящий через обмотку трансформатора, вызывает появление в ней электромагнитной индукции. Некоторые устройства с высокими или сверхвысокими частотами могут не иметь магнитопровода. В идеальном варианте не должно быть потерь электроэнергии, расходуемой на потоки рассеивания и нагрев обмоток.
Трансформаторы могут работать в различных режимах:
- Холостой ход. В данном случае вторичная цепь устройства разомкнута и ток по ней не проходит. Компенсация напряжения источника питания происходит за счет компенсации электродвижущей силы индукции в первичной обмотке.
- Режим нагрузки. Вторичная цепь находится в замкнутом состоянии. В ней появляется ток, под действием которого в магнитопроводе возникает магнитный поток. Он действует в противоположном направлении относительно магнитного потока, возникающего в первичной обмотке. Равновесие ЭДС индукции с источником питания оказывается нарушенным. В результате, ток в первичной обмотке будет увеличиваться, пока значение магнитного потока не выйдет на прежний уровень. Это основной рабочий режим для любого трансформатора.
- В режиме короткого замыкания вторичная цепь замыкается накоротко. Данное состояние позволяет определить, насколько теряется полезная мощность трансформатора при нагреве проводов. Подача небольшого переменного напряжения осуществляется на первичную обмотку. Его величина должна быть одинаковой с номинальным током устройства.
Теория трансформаторов
Теоретические обоснования того, что делают трансформаторы, включают в себя несколько разделов:
- Уравнения линейного трансформатора;
- Т-образная схема замещения;
- Потери;
- Габаритная мощность;
- КПД.
Уравнения линейного трансформатора
Линейные уравнения отображают взаимосвязь между величинами характеристик трансформатора. К ним относятся:
- U1 = L1(di1/dt) +L1,2(di2/dt) + I1 R1;
- L2(dI2/dt) + L1.2 + I2R2 = – I2RH,
где:
- U1 – мгновенное напряжение в первичной катушке;
- I1 и I2 – сила тока в обмотках;
- RH – сопротивление в нагрузке;
- L1,2 – взаимная индуктивность обмоток;
- L1, R1, и L2, R2 – индуктивность и сопротивление обеих катушек.
Т-образная схема замещения
Для тестирования электрической цепи какого-либо устройства трансформатор замещают Т-образной схемой, состоящей из элементов, указанных на нижнем рисунке.
Т-образная схема замещения
Потери
Специалисты разделяют потери на траты в стали и меди. Потери в стали происходят в сердечнике, утрата части энергии в меди относится к медным виткам обмоток.
В стали
Утрата части энергии происходит по причине потерь в магнитопроводе и обмотках. Величина потерь в стали связана с конструкцией сердечника, качеством электротехнической стали. Траты энергии уходят на нагрев, гистерезис и образование вихревых токов.
Магнитопроводы, сделанные из трансформаторного железа с добавлением кремния, значительно уменьшают потери и повышают удельное сопротивление стали. Конструкцию сердечника улучшают промежуточным лакированием соприкасающихся поверхностей пластин.
В меди
Потери в обмотках вызваны ненулевым вектором активного сопротивления в катушках преобразователя напряжения. Потери в меди сопровождаются нагревом проводов в обмотках. Часто они вызваны несоответствием количества витков напряжению в обмотках.
Габаритная мощность
Габаритную мощность трансформатора рассчитывают следующей формулой:
Pgab = (P1 + P2)/2 = (U1I1 + U2I2)/2.
Этот параметр можно определить ориентировочно по сечению сердечника. Величина габаритной мощности зависит от ряда показателей, таких как качество и толщина листов магнитопровода, размер проёма, степень индукции, общее сечение проводов обмоток и качество диэлектрических слоёв между пластинами.
Дополнительная информация. Ещё один фактор влияет на габаритную мощность трансформатора – это его стоимость. Чем дешевле устройство, тем меньше этот показатель.
Формула 1
Формула 2
Формула 3
Области различных технологий
Например, для питания электротермических установок применяют электропечные трансформаторы. Работают такие трансформаторы обычно на частоте 50Гц, а их мощность может достигать десятков тысяч киловольт-ампер при напряжении до 10кВ.
В области электросварки широко применяются сварочные трансформаторы, мощность которых гораздо меньше чем электропечных.
Как случай единичного применения, трансформатор Тесла, который применяется для создания спецэффектов в шоу индустрии.
Для подачи питания в различные электрические цепи радио и теле аппаратуры, автоматики и телемеханики, изделий связи, электробытовых приборов; а также для разделения и (или) согласования напряжений цепей различных элементов вышеуказанных устройств и т.д.
Эти трансформаторы обычно маломощные (от вольт-ампера до нескольких киловольт-ампер). Могут иметь две или более обмотки, работают при невысоких напряжениях в основном на частоте 50Гц, но гораздо реже и на более высоких частотах (до десятков килогерц). Условия работы вышеуказанных трансформаторов зачастую могут быть специфичны, что может вызывать повышенные требования при изготовлении и проектировании.
Трансформаторы в электроснабжении
Эксплуатируемые на электростанциях генераторы переменного тока, как правило, вырабатывают электроэнергию при напряжениях 6-24кВ, но передавать электрическую энергию на большие расстояния значительно выгодней при напряжениях гораздо выше. Обычно напряжения на высоковольтных линиях электропередач имеют значения 110, 220, 330, 400, 500 и 750кВ. Поэтому для согласования генераторов переменного тока и линий электропередач, на каждой электростанции устанавливают повышающие напряжение трансформаторы.
Поставляемую линиями электропередач электроэнергию необходимо распределять между потребителями, населенными пунктами (городами и сёлами), промышленными предприятиями, внутри городов и сёл, а также внутри крупных предприятий, где электроснабжение осуществляется по воздушным и кабельным линиям и может иметь значение 220, 110, 35, 20, 10 и 6кВ. Из этого следует, что в узлах распределительных сетей надо устанавливать трансформаторы понижающие напряжение от линий электропередач до значения применяемого конкретным потребителем (населённым пунктом или предприятием).
Но и это ещё не всё, ведь большинство конечных потребителей используют переменную электроэнергию напряжением 110, 220, 380 и 660в. Поэтому понижающие трансформаторы надо устанавливать и для пунктов конечного потребления электроэнергии.
Итого, чтобы пройти путь от электростанции до конечного потребителя, электрическая энергия подвергается многократным трансформаторным преобразованиям, примерно от 3-х до 5-ти раз.
Трансформаторы, которые выполняют вышеуказанные функции по передаче и распределению электроэнергии, принято называть силовыми трансформаторами.
Основными особенностями силових трансформаторов являются очень малые отклонения значений напряжений от номинальных на первичных и вторичных обмотках, а также то, что они почти всегда работают на частоте 50 Гц. Силовые трансформаторы бывают двух- и трёх- обмоточными, одно- и трёхфазными, и могут быть изготовлены на напряжение до 1150кВ и мощность до 1 000 000 кВ*A.
ВЫБОР СИЛОВОГО ТРАНСФОРМАТОРА
Основным критерием выбора трансформатора на предприятии является его мощность и требования к надежности питания. Для отдельных категорий потребителей необходимо увеличивать количество устанавливаемых устройств для обеспечения бесперебойного питания.
Залогом высокой финансовой эффективности оборудования является грамотное проектирование оптимальной сети распределения электроэнергии. Но, кроме текущих затрат на приобретение и обслуживание установленных устройств преобразования электроэнергии, следует продумать перспективу развития или переоборудования производства, что повлечет за собой изменение требований к техническим характеристикам силовых трансформаторов.
Для обеспечения бесперебойного питания на предприятиях устанавливается два силовых трансформатора. Их мощность рассчитывается с тем условием, чтобы при неисправности одного из них, второй мог обеспечить потребителей нормальным питанием с учетом перегрузочной способности.
То есть, если на предприятии установлены два трансформатора, и они работают с коэффициентом загрузки по 0.7 каждый, то при отказе одного из них, второй будет работать с перегрузкой 40 %.
Использовать оборудование с низким коэффициентом загрузки экономически нецелесообразно.Также нужно учитывать колебания величины нагрузки в зависимости от времени.
При выборе силовых трансформаторов также необходимо уделять внимание защите. Защита бывает двух основных видов — защита от перегрузок т от внутренних повреждений
Для защиты от перегрузок применяется дифференциальная защита, в основе которой лежат трансформаторы тока, установленные на каждой фазе.
К внутренней защите относятся устройства, которые контролируют:
- уровень и давление масла;
- температуру обмоток и сердечника;
- наличие газов.
Условные обозначения трансформаторов
Каждый трансформатор имеет собственные условные обозначения, расшифровывающие основные технические характеристики и параметры устройства.
Буквенные символы обозначают следующее:
- А – конструкция автотрансформатора.
- О – однофазная модификация.
- Т – трехфазное устройство, с наличием или отсутствием расщепления обмоток.
В соответствии с системой охлаждения, трансформаторы маркируются следующим образом:
- Сухого типа: «С» – с естественным воздушным охлаждением, открытого исполнения; «СЗ» – то же самое, защищенного исполнения; «СГ» – то же самое, герметичного исполнения; «СД» – воздушное охлаждение с дутьем.
- Масляное охлаждение: «М» – естественное; «МЗ» – естественное, с защитной азотной подушкой без расширителя; «Д» – дутье и естественная циркуляция масла; «ДЦ» – дутье и принудительная циркуляция масла; «Ц» – масляно-водяное охлаждение и принудительная циркуляция масла.
- С использованием негорючего жидкого диэлектрика: «Н» и «НД» – естественное охлаждение и с применением дутья.
Существует множество других буквенных и цифровых обозначений. Правильно расшифровать их помогут специальные справочники и таблицы.
Особенности конструкции
При работе трансформатора тока вторичная обмотка всегда находится под нагрузкой, сопротивление которой регулируется требованиями к точности коэффициента трансформации. Допускается незначительное отклонение сопротивления от указанного в паспорте устройства.
Если произойдет увеличение нагрузки, то во второй обмотке резко возрастет напряжение, что может привести к пробою изоляции и поломке устройства. Такая ситуация создает угрозу безопасности сотрудникам, которые обслуживают электрический прибор. В устройство трансформатора тока входят:
- основание;
- магнитопровод (сердечник);
- первичная обмотка;
- вторичная обмотка;
- клеммник для подсоединения кабеля от источника питания;
- заземляющий контакт.
Первичная обмотка изготавливается в виде катушки, закрепленной на магнитопроводе, или как шина. Согласно конструктивного исполнения в некоторых устройствах нет встроенной первичной катушки, а дополняется она обслуживающим персоналом путем соединения отдельного провода через специальное окно.
Корпус устройства выполняет роль изоляции и предохранения обмоток от внешних повреждений. В последних моделях устройств сердечники изготавливаются из нанокристаллических сплавов, которые значительно увеличивают класс точности прибора.
Из-за больших потерь в сердечнике устройство начинает сильно нагреваться, что приводит к износу или выходу из строя его изоляции. Вторая обмотка в разомкнутом состоянии также создает негативное явление, так как происходит перегрев и выгорание магнитного провода.
Связано это с тем, что в магнитных конструкциях имеются потери, связанные с намагничиванием и нагревом магнитопровода. Чтобы несколько сгладить эти погрешности производители используют витковую коррекцию.
Общее устройство и принцип работы
Каждый трансформатор оборудуется двумя или более обмотками, индуктивно связанными между собой. Они могут быть проволочными или ленточными, покрытыми изоляционным слоем. Обмотки наматываются на сердечник, он же магнитопровод, выполненный из мягких ферромагнитных материалов. При наличии одной обмотки, такое устройство называется автотрансформатором.
Принцип действия трансформатора довольно простой и понятный. На первичную обмотку устройства подается переменное напряжение, что приводит к течению в ней переменного тока. Этот переменный ток, в свою очередь, вызывает создание в магнитопроводе переменного магнитного потока. Под его воздействием в первичной и вторичной обмотках происходит наведение переменной электродвижущей силы (ЭДС). Когда вторичная обмотка замыкается на нагрузку, по ней также начинает течь переменный ток. Этот ток во вторичной системе отличается собственными параметрами. У него индивидуальные показатели тока и напряжения, количество фаз, частота и форма кривой напряжения.
Энергетические системы, осуществляющие передачу и распределение электроэнергии, пользуются силовыми трансформаторами. С помощью этих устройств изменяются величины переменного тока и напряжения. Однако частота, количество фаз, кривая тока или напряжения, остаются в неизменном виде.
Конструкция
Основу трансформатора выделить сложно, но если опираться на вес, то это, несомненно, сердечник (магнитопровод). Он изготавливается из стальных листов, которые собраны воедино и плотно стянуты друг с другом. Это позволяет получить максимально возможное сечение магнитопровода.Но не только сталь может применяться, нередко изготавливаются сердечники из ферромагнетиков.
Это вещество, которое по свойствам очень схоже с металлом, но имеет несколько иную структуру. Существуют определенные виды трансформаторов, фото основных конструкций приведены в статье.В конструкции присутствует минимум две обмотки.На одну (первичную) производится подача напряжения питания. Со второй, третьей, N-ной, снимается пониженное напряжение с частотой и формой, аналогичной входному.
Обмотки силовых состоят из медного провода.Он наматывается на каркасе, расположенном вокруг магнитопровода. При подаче напряжения в первичную цепь появляется переменное магнитное поле,которое во вторичной обмотке индуцирует ЭДС. В результате этого на выходе появляется некоторая разность потенциалов.
ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ
К основным техническим параметрам трансформаторов напряжения относятся:
- номинальное значение напряжения электрической сети, для работы в которой предназначен ТН;
- коэффициент трансформации;
- мощность — номинальная величина и её максимально допустимое значение.
Поскольку величина U на низкой стороне трансформатора напряжения любого класса имеет одинаковое значение, числовое значение коэффициента трансформации равно напряжению первичной сети, делённому на 100 или на 100/√3.
Вторичные измерительные приборы обычно имеют шкалу на 100 вольт, которая проградуирована в первичных единицах. Например, при измерении в сети 35 кВ номинальное значение U вольтметра составляет 100 вольт, при этом показания прибора составляют 35 кВ.
В схемах учёта при определении реального значения потреблённой электрической энергии показания счётчика умножаются на коэффициенты трансформации трансформаторов тока и напряжения.
При определении фактической мощности нагрузки измерительных трансформаторов обычно пользуются величиной суммарного сопротивления приборов, подключенных к низкой стороне.
Оптимальное значение мощности нагрузки, при которой обеспечивается соответствие основных параметров ТН, лежит в пределах 25% – 100% номинала.
* * *
2014-2021 г.г. Все права защищены.Материалы сайта имеют ознакомительный характер и не могут использоваться в качестве руководящих и нормативных документов.
Импульсный трансформатор тока
Чтобы иметь возможность измерять направление и величину тока, для импульсных схем часто применяется особый трансформатор. Виды трансформаторовэтой группы имеют ферритовый сердечник. Чаще всего он имеет единственную кольцевую обмотку.
Через ее центр продевается провод. В нем и исследуется ток. Обмотку при этом нагружают на резистор.
Измерение производится по несложной схеме. Если нагрузка выполняется на резистор известного номинала, то напряжение при замере на нем будет пропорциональным показателю тока обмотки.
В продаже присутствуют трансформаторы этого типа с различными показателями коэффициента трансформации. Если нужно узнать только направленность тока, прибор нагружается только двумя стабилизаторами, встроенными в схему.
Особенности установки трансформаторных подстанций в зависимости от их типов
Необходимо знать, как и где правильно располагать подстанции, в том числе и мачтовые трансформаторные подстанции.
От места и способа разделяют несколько категорий присоединения подстанций к электрической цепи, а именно:
- тупиковые подстанции получают энергию от определенной электроустановки по одной или же двум линиям, которые, в свою очередь, параллельны между собой. Тупиковые – это такие подстанции, которые получают питание по радиальным схемам и это является самым главным их отличием;
- ответвительные – это такой тип подстанции, которые присоединяются к проходящим линиям (одной или двум) глухой отпайкой;
- проходные. Главная их цель – это присоединение к сети при помощи захода одной или же двух линий, которые обладают только двусторонним питанием;
- узловые. К данной подстанции подсоединено несколько линий питающей сети, которые проходят от двух или более питающих электрических установок.
Схема трансформаторной подстанции необходима и важна, так как благодаря ей можно избежать множества нелепых ошибок и не допустить серьезных проблем. Следует только правильно ею пользоваться и уметь ее читать, и тогда работа пройдет точно и легко.
При разработке схем профессионалы пытаются максимально ее упростить и сделать более понятной для большой аудитории людей, однако, не смотря на все усилия, иногда допускаются неприятные ошибки, которые могут вести к серьезным сбоям и требуют исправления сразу на месте.
Таким образом, трансформаторные подстанции имеют широкие возможности применения и гибкие характеристики, которые позволяют использовать каждый тип подстанции для определенных объектов, в зависимости от поставленной проектировщиком задачи.
Принцип действия трансформатора
Электромагнитная
схема однофазного двухобмоточного
трансформатора состоит из двух обмоток
(рис. 2.1), размещенных на замкнутом
магнитопроводе, который выполнен из
ферромагнитного материала. Применение
ферромагнитного магнитопровода позволяет
усилить электромагнитную связь между
обмотками, т. е. уменьшить магнитное
сопротивление контура, по которому
проходит магнитный поток машины.
Первичную обмотку 1 подключают к источнику
переменного тока — электрической сети
с напряжением u1.Ко
вторичной обмотке 2 присоединяют
сопротивление нагрузки ZH.
Обмотку
более высокого напряжения называют обмоткой
высшего напряжения(ВН),
а низкого напряжения — обмоткой
низшего напряжения(НН).
Начала и концы обмотки ВН обозначают
буквами Аи X;обмотки
НН — буквами аи х.
При
подключении к сети в первичной обмотке
возникает переменный ток i1,который
создает переменный магнитный поток Ф,
замыкающийся по магнитопроводу. Поток
Ф индуцирует в обеих обмотках переменные
ЭДС — е1и е2,пропорциональные,
согласно закону Максвелла, числам витков
w1 и w2 соответствующей
обмотки и скорости изменения потока dФ/dt.
Рис. |
Таким образом,
мгновенные значения ЭДС, индуцированные
в каждой обмотке,
е1=
— w1 dФ/dt;
е2= -w2dФ/dt.
Следовательно,
отношение мгновенных и действующих ЭДС
в обмотках определяется выражением
-
E1/E2= e1/e2= w1/w2.
(2.1)
Если
пренебречь падениями напряжения в
обмотках трансформатора, которые
обычно не превышают 3 — 5% от номинальных
значений напряжений U1 и U2,и
считать E1≈U l и Е2≈U2,
то получим
-
U1/U2≈w1/w2.
(2.2)
Следовательно,
подбирая соответствующим образом числа
витков обмоток, при заданном напряжении
U1можно
получить желаемое напряжение U2.Если
необходимо повысить вторичное напряжение,
то число витков w2 берут
больше числа w1;
такой трансформатор называют повышающим.Если
требуется уменьшить напряжение U2,то
число витков w2 берут
меньшим w1;
такой трансформатор называют понижающим,
Отношение
ЭДС ЕВН обмотки
высшего напряжения к ЭДС ЕНН обмотки
низшего напряжения (или отношение их
чисел витков) называют коэффициентом
трансформации
-
k= ЕВН/ЕНН = wВН/wНН
(2.3)
Коэффициент kвсегда
больше единицы.
В
системах передачи и распределения
энергии в ряде случаев применяют
трехобмоточные трансформаторы, а в
устройствах радиоэлектроники и
автоматики — многообмоточные
трансформаторы. В таких трансформаторах
на магнитопроводе размещают три или
большее число изолированных друг от
друга обмоток, что дает возможность при
питании одной из обмоток получать два
или большее число различных напряжений (U2,
U3,
U4 и
т.д.) для электроснабжения двух или
большего числа групп потребителей. В
трехобмоточных силовых трансформаторах
различают обмотки высшего, низшего и
среднего (СН) напряжений.
В трансформаторе
преобразуются только напряжения и токи.
Мощность же остается приблизительно
постоянной (она несколько уменьшается
из-за внутренних потерь энергии в
трансформаторе). Следовательно,
-
I1/I2≈ U2/U1≈ w2/w1.
(2.4)
При
увеличении вторичного напряжения
трансформатора в kраз
по сравнению с первичным, ток i2 во
вторичной обмотке соответственно
уменьшается в kраз.
Трансформатор
может работать только в цепях переменного
тока.Если
первичную обмотку трансформатора
подключить к источнику постоянного
тока, то в его магнито-проводе образуется
магнитный поток, постоянный во времени
по величине и направлению. Поэтому в
первичной и вторичной обмотках в
установившемся режиме не индуцируются
ЭДС, а следовательно, не передается
электрическая энергия из первичной
цепи во вторичную. Такой режим опасен
для трансформатора, так как из-за
отсутствия ЭДС E1 первичной
обмотке ток I1 =U1R1 весьма
большой.
Важным
свойством трансформатора, используемым
в устройствах автоматики и радиоэлектроники,
является способность его преобразовывать
нагрузочное сопротивление. Если к
источнику переменного тока подключить
сопротивление R через
трансформатор с коэффициентом
трансформации к,то
для цепи источника
-
R’= P1/I12≈ P2/I12≈
I22R/I12≈ k2R
(2.5)
где Р1—
мощность, потребляемая трансформатором
от источника переменного тока,
Вт;
Р2 =
I22R≈ P1 —
мощность, потребляемая сопротивлением R от
трансформатора.
Таким
образом, трансформатор
изменяет значение сопротивления R в
k2раз.Это
свойство широко используют при разработке
различных электрических схем для
согласования сопротивлений нагрузки
с внутренним сопротивлением источников
электрической энергии.
Общее устройство и принцип работы
Каждый трансформатор оборудуется двумя или более обмотками, индуктивно связанными между собой. Они могут быть проволочными или ленточными, покрытыми изоляционным слоем. Обмотки наматываются на сердечник, он же магнитопровод, выполненный из мягких ферромагнитных материалов. При наличии одной обмотки, такое устройство называется автотрансформатором.
Принцип действия трансформатора довольно простой и понятный. На первичную обмотку устройства подается переменное напряжение, что приводит к течению в ней переменного тока. Этот переменный ток, в свою очередь, вызывает создание в магнитопроводе переменного магнитного потока. Под его воздействием в первичной и вторичной обмотках происходит наведение переменной электродвижущей силы (ЭДС). Когда вторичная обмотка замыкается на нагрузку, по ней также начинает течь переменный ток. Этот ток во вторичной системе отличается собственными параметрами. У него индивидуальные показатели тока и напряжения, количество фаз, частота и форма кривой напряжения.
Энергетические системы, осуществляющие передачу и распределение электроэнергии, пользуются силовыми трансформаторами. С помощью этих устройств изменяются величины переменного тока и напряжения. Однако частота, количество фаз, кривая тока или напряжения, остаются в неизменном виде.