Коэффициент упругости

Что такое жесткость матраса

Жесткость матраса – базовый показатель, с помощью которого можно определить степень комфорта и анатомическое положение тела во время ночного отдыха. Жесткость матраса созвучна его твердости и показывает, насколько изделие может прогнуться под массой спящего человека.

Выделяют три основные степени жесткости:

  • высокая;
  • средняя;
  • минимальная.

Изделия с максимальной жесткостью больше подойдут для маленьких детей, а также людям с заболеваниями верхней части спины. Модели средний жесткости и плотности идеальны для молодых и здоровых людей. Людям старшей возрастной категории больше подойдут мягкие матрасы.

Жёсткость деформируемых тел при их соединении[править | править код]

Параллельное соединение пружин.


Последовательное соединение пружин.

При соединении нескольких упруго деформируемых тел (далее для краткости — пружин) общая жёсткость системы будет меняться. При параллельном соединении жёсткость увеличивается, при последовательном — уменьшается.

Параллельное соединениеправить | править код

При параллельном соединении n{\displaystyle n} пружин с жёсткостями, равными k1,k2,k3,…,kn,{\displaystyle k_{1},k_{2},k_{3},…,k_{n},} жёсткость системы равна сумме жёсткостей, то есть k=k1+k2+k3+…+kn.{\displaystyle k=k_{1}+k_{2}+k_{3}+\ldots +k_{n}.}

Доказательство

В параллельном соединении имеется n{\displaystyle n} пружин с жёсткостями k1,k2,…,kn.{\displaystyle k_{1},k_{2},…,k_{n}.} Из III закона Ньютона, F=F1+F2+…+Fn.{\displaystyle F=F_{1}+F_{2}+\ldots +F_{n}.} (К ним прикладывается сила F{\displaystyle F}. При этом к пружине 1 прикладывается сила F1,{\displaystyle F_{1},} к пружине 2 сила F2,{\displaystyle F_{2},} … , к пружине n{\displaystyle n} сила Fn.{\displaystyle F_{n}.})

Теперь из закона Гука (F=−kx{\displaystyle F=-kx}, где x — удлинение) выведем: F=kx;F1=k1x;F2=k2x;…;Fn=knx.{\displaystyle F=kx;F_{1}=k_{1}x;F_{2}=k_{2}x;…;F_{n}=k_{n}x.} Подставим эти выражения в равенство (1): kx=k1x+k2x+…+knx;{\displaystyle kx=k_{1}x+k_{2}x+\ldots +k_{n}x;} сократив на x,{\displaystyle x,} получим: k=k1+k2+…+kn,{\displaystyle k=k_{1}+k_{2}+\ldots +k_{n},} что и требовалось доказать.

Последовательное соединениеправить | править код

При последовательном соединении n{\displaystyle n} пружин с жёсткостями, равными k1,k2,k3,…,kn,{\displaystyle k_{1},k_{2},k_{3},…,k_{n},} общая жёсткость определяется из уравнения: 1k=(1k1+1k2+1k3+…+1kn).{\displaystyle 1/k=(1/k_{1}+1/k_{2}+1/k_{3}+\ldots +1/k_{n}).}

Доказательство

В последовательном соединении имеется n{\displaystyle n} пружин с жёсткостями k1,k2,…,kn.{\displaystyle k_{1},k_{2},…,k_{n}.} Из закона Гука (F=−kl{\displaystyle F=-kl}, где l — удлинение) следует, что F=k⋅l.{\displaystyle F=k\cdot l.} Сумма удлинений каждой пружины равна общему удлинению всего соединения l1+l2+…+ln=l.{\displaystyle l_{1}+l_{2}+\ldots +l_{n}=l.}

На каждую пружину действует одна и та же сила F.{\displaystyle F.} Согласно закону Гука, F=l1⋅k1=l2⋅k2=…=ln⋅kn.{\displaystyle F=l_{1}\cdot k_{1}=l_{2}\cdot k_{2}=\ldots =l_{n}\cdot k_{n}.} Из предыдущих выражений выведем: l=Fk,l1=Fk1,l2=Fk2,…,ln=Fkn.{\displaystyle l=F/k,\quad l_{1}=F/k_{1},\quad l_{2}=F/k_{2},\quad …,\quad l_{n}=F/k_{n}.} Подставив эти выражения в (2) и разделив на F,{\displaystyle F,} получаем 1k=1k1+1k2+…+1kn,{\displaystyle 1/k=1/k_{1}+1/k_{2}+\ldots +1/k_{n},} что и требовалось доказать.

Влияние радиоактивного облучения на изменение механических свойств

Радиоактивное облучение по-разному влияет на различные материалы. Облучение материалов неорганического происхождения по своему влиянию на механические характеристики и характеристики пластичности подобно понижению температуры: с увеличением дозы радиоактивного облучения увеличивается предел прочности и особенно предел текучести, а характеристики пластичности снижаются.

Облучение пластмасс также приводит к увеличению хрупкости, причем на предел прочности этих материалов облучение оказывает различное влияние: на некоторых пластмассах оно почти не сказывается (полиэтилен), у других вызывает значительное понижение предела прочности (катамен), а в третьих — повышение предела прочности (селектрон).

Видео

Из этого видео вы узнаете, как определить жесткость пружины.

Чем большей деформации подвергается тело, тем значительней в нем возникает сила упругости. Это значит, что деформация и сила упругости взаимосвязаны, и по изменению одной величины можно судить об изменении другой. Так, зная деформацию тела, можно вычислить возникающую в нем силу упругости. Или, зная силу упругости, определить степень деформации тела.

Если к пружине подвешивать разное количество гирек одинаковой массы, то чем больше их будет подвешено, тем сильнее пружина растянется, то есть деформируется. Чем больше растянута пружина, тем большая в ней возникает силы упругости. Причем опыт показывает, что каждая следующая подвешенная гирька увеличивает длину пружины на одну и туже величину.

Так, например, если исходная длина пружины была 5 см, а подвешивание на ней одной гирьки увеличило ее на 1 см (т. е. пружина стала длиной 6 см), то подвешивание двух гирек увеличит ее на 2 см (общая длина составит 7 см), а трех — на 3 см (длина пружины будет 8 см).

Еще до опыта известно, что вес и возникающая под его действием сила упругости находятся друг с другом в прямопропорциональной зависимости. Кратное увеличение веса во столько же раз увеличит силу упругости. Опыт же показывает, что деформация точно также зависит от веса: кратное увеличение веса во столько же раз увеличивает изменения в длине. Это значит, что, исключив вес, можно установить прямопропорциональную зависимость между силой упругости и деформацией.

Если обозначить удлинение пружины в результате ее растяжения как x или как ∆ l ( l 1 – l , где l — начальная длина, l 1 — длина растянутой пружины), то зависимость силы упругости от растяжения можно выразить такой формулой:

В формуле используется коэффициент k . Он показывает, в какой именно зависимости находятся сила упругости и удлинение. Ведь удлинение на каждый сантиметр может увеличивать силу упругости одной пружины на 0,5 Н, второй на 1 Н, а третьей на 2 Н. Для первой пружины формула будет выглядеть как Fупр = 0,5x, для второй — Fупр = x, для третьей — Fупр = 2x.

Коэффициент k называют жесткостью пружины. Чем жестче пружина, тем труднее ее растянуть, и тем большее значение будет иметь k. А чем больше k, тем больше будет сила упругости (Fупр) при равных удлинения (x) разных пружин.

Жесткость зависит от материала, из которого изготовлена пружина, ее формы и размеров.

Единицей измерения жесткости является Н/м (ньютон на метр). Жесткость показывает, сколько ньютонов (сколько сил) надо приложить к пружине, чтобы растянуть ее на 1 м. Или насколько метров растянется пружина, если приложить для ее растяжения силу в 1 Н. Например, к пружине приложили силу в 1 Н, и она растянулась на 1 см (0,01 м). Это значит, что ее жесткость равна 1 Н / 0,01 м = 100 Н/м.

Также, если обратить внимание на единицы измерения, то станет понятно, почему жесткость измеряется в Н/м. Сила упругости, как и любая сила, измеряется в ньютонах, а расстояние – в метрах

Чтобы уровнять по единицам измерения левую и правую части уравнения Fупр = kx, надо в правой части сократить метры (то есть поделить на них) и добавить ньютоны (то есть умножить на них).

Соотношение между силой упругости и деформацией упругого тела, описываемое формулой Fупр = kx, открыл английский ученый Роберт Гук в 1660 году, поэтому это соотношение носит его имя и называется законом Гука.

Упругой деформацией является такая, когда после прекращения действия сил, тело возвращается в свое исходное состояние. Бывают тела, которые почти нельзя подвергнуть упругой деформации, а у других она может быть достаточно большой. Например, поставив тяжелый предмет на кусок мягкой глины, вы измените его форму, и этот кусок сам уже не вернется в исходное состояние. Однако если вы растяните резиновый жгут, то после того, как отпустите его, он вернет свои исходные размеры. Следует помнить, что закон Гука применим только для упругих деформаций.

Формула Fупр = kx дает возможность по известным двум величинам вычислять третью. Так, зная приложенную силу и удлинение, можно узнать жесткость тела. Зная, жесткость и удлинение, найти силу упругости. А зная силу упругости и жесткость, вычислить изменение длины.

Коэффициент жесткости цилиндрической пружины

На практике и в физике довольно большое распространение получили именно цилиндрические пружины. Их ключевыми особенностями можно назвать следующие моменты:

  1. При создании указывается центральная ось, вдоль которой и действует большинство различных сил.
  2. При производстве рассматриваемого изделия применяется проволока определенного диаметра. Она изготавливается из специального сплава или обычных металлов. Не стоит забывать о том, что материал должен обладать повышенной упругостью.
  3. Проволока накручивается витками вдоль оси. При этом стоит учитывать, что они могут быть одного или разного диаметра. Довольно большое распространение получил вариант исполнения цилиндрического типа, но большей устойчивостью характеризуется цилиндрический вариант исполнения, в сжатом состоянии деталь обладает небольшой толщиной.
  4. Основными параметрами можно назвать больший, средний и малый диаметр витков, диаметр проволоки, шаг расположения отдельных колец.

Не стоит забывать о том, что выделяют два типа деталей: сжатия и растяжения. Их коэффициент жесткости определяется по одной и той же формуле. Разница заключается в следующем:

  1. Вариант исполнения, рассчитанный на сжатие, характеризуется дальним расположением витков. За счет расстояние между ними есть возможность сжатия.
  2. Модель, рассчитанная на растяжение, имеет кольца, расположенные практически вплотную. Подобная форма определяет то, что при максимальная сила упругости достигается при минимальном растяжении.
  3. Также есть вариант исполнения, который рассчитан на кручение и изгиб. Подобная деталь рассчитывается по определенным формулам.

Расчет коэффициента цилиндрической пружины может проводится при использовании ранее указанной формулы. Она определяет то, что показатель зависит от следующих параметров:

  1. Наружного радиуса колец. Как ранее было отмечено, при изготовлении детали применяется ось, вокруг которой проводится накручивание колец. При этом не стоит забывать о том, что выделяют также средний и внутренний диаметр. Подобный показатель указывается в технической документации и на чертежах.
  2. Количества создаваемых витков. Этот параметр во многом определяет длину изделия в свободном состоянии. Кроме этого, количество колец определяет коэффициент жесткость и многие другие параметры.
  3. Радиуса применяемой проволоки. В качестве исходного материала применяется именно проволока, которая изготавливается из различных сплавов. Во многом ее свойства оказывают влияние на качества рассматриваемого изделия.
  4. Модуля сдвига, который зависит от типа применяемого материала.

Коэффициент жесткости считается одним из наиболее важных параметров, который учитывается при проведении самых различных расчетов.

Сила упругости

Любое тело, когда его деформируют и оказывают внешнее воздействие, сопротивляется и стремиться восстановить прежние форму и размеры. Это происходит по причине электромагнитного взаимодействия в теле на молекулярном уровне.

Деформация — изменение положения частиц тела друг относительно друга. Результат деформации — изменение межатомных расстояний и перегруппировка блоков атомов.

Определение. Что такое сила упругости?

Сила упругости — сила, возникающая при деформации в теле и стремящаяся вернуть тело в начальное состояние. 

Рассмотрим простейшие деформации — растяжение и сжатие 

На рисунке показано, как действует сила упругости, когда мы сжимаем или растягиваем стержень.

Когда возникает и от чего зависит

В принципах объяснения этого явления заложены изменения геометрии межмолекулярных пространств и, соответственно, — сил, удерживающих молекулярные решетки в естественном положении. Другими словами, молекулярная решетка всегда стремится к стабильности. Увеличение либо уменьшение расстояния между молекулами, которые непременно происходят при растяжении либо сжатии, влечет возникновение сопротивления. Его интенсивность прямо пропорциональна величине деформации.

При упругих изменениях формы тела в них появляется потенциальная энергия. Это электромагнитная величина, которую характеризуют как внешнее проявление межмолекулярных сил. Направление вектора этих сил противоположно смещению молекул. Простейшим примером подобной ситуации является растяжение либо сжатие пружины. По мере прекращения воздействия пружина принимает первоначальный вид и в ней исчезает сила упругости.

Такая зависимость нашла свое отражение в законе Гука — постулате, лежащем в основе многих физических процессов.

Пример

Результат проявления Fупр — стрельба из лука, весы на пружине, спортивный инвентарь с пружинным механизмом, белье, вывешенное на веревке, матрац пружинной конструкции и др.

Расчёт кольцевой жёсткости трубы

Расчётные данные кольцевой жёсткости труб получают экспериментально при испытаниях изделий на специальных стендах. При этом выбирается отрезок трубы и определяется нагрузка и деформация, которая соответствует деформации примерно 4% тестируемого изделия. Испытаниям подвергаются три экземпляра из партии, определяется среднеарифметическое число, которое округляется до наиболее близкого минимального стандартного показателя. То есть от класса жёсткости зависит, какая номинальная нагрузка может приходится на единицу площади изделия в случае 4-процентной деформации сечения по вертикали, не учитывая отпора сбоку.

Для определения SN применяется формула:

E0 – модуль упругости материала, из которого изготовлено изделие; I – момент инерции стенки изделия; d – диаметр, который измеряется в месте центра тяжести стенки изделия, и равен:

di – внутренний диаметр изделия; y – расстояние до центра тяжести стенки изделия.

Наполнители матрасов

Матрасы редко изготавливаются с одним слоем наполнения. Практически каждый из них состоит из нескольких слоёв разного наименования. Своё название модель получает по самому объёмному материалу, расположенному в центре. Рассмотрим основные современные материалы:

• Натуральный латекс. Производится из древесного сока гевеи. Долговечный, дышащий материал.

• Искусственный латекс. Максимально жёсткий синтетический материал, напоминающий на ощупь натуральный.

• Пружины. Стальные. Бывают зависимые, сцепленные все вместе, и независимые. Такая система состоит из отдельных частей, которые двигаются независимо от других, что даёт возможность повторять форму лежащего человека.

• Пенополиуретан. Мягкий синтетический материал. Именно он имеет эффект Memory Foam (памяти тела).

• Кокосовое волокно (койра). Жёсткий натуральный материал.

Поверх слоев матраса применяется хлопковый чехол со слоем овечьей шерсти, которая «дышит» и позволяет впитывать влагу во время сна.

На фото
беспружинный матрас Blue Sleep Concept с анатомической поддержкой тела

Примеры решения задач на силу упругости

 Задания по определению силы упругости часто встречаются в экзаменационных работах и олимпиадах.

Задача 1

Для растяжения пружины прикладывают силу 30 Н (F1). Тогда ее длина составляет 28 см. При ее сжатии с такой же F2, длина уменьшается до 22 см. Найти начальную длину пружины, а также коэффициент ее жесткости.

Решать задачу следует по схеме:

\(F1=k(l1-l0)\)

\(F2=k(l0-l2)\)

Из этих формул вытекает: \(l1-l0=l0-l2\)

\(l0=(l1+l2)/2=(28+22)/2=25\)

Определение жесткости пружины нужно произвести по формуле:

\(k=F1/(l1-l0)=30/(28-25)*10^{-2 }=1000\)

Ответ: 25 см, 1000 Н/м

Задача 2

Пружины соединены способом, изображенным на схеме:

Жесткость каждой составляет 10 Н/м. Определить величину силы, которую нужно приложить ко всей системе, чтобы точка ее приложения стала ниже на 10 см.

Решение происходит по этапам:

1. Растяжение верхней и нижней пружин характеризуются формулой:

\(\triangle x2=F/k\)

2. Поскольку средние пружины подсоединены параллельно, их растяжение происходит в соответствии с формулой:

\(\triangle x2=F/2k\)

Каждая из пружин при этом растянется на: \(\triangle x1/2\)

Следовательно, справедливо математическое выражение: \(\triangle x2=\triangle x1/2\)

 Через промежуточные формулы:

\(2,5\triangle x1=\triangle x\)

\(\triangle x1=\triangle x/2,5\)

\(10/2,5=4\)

находим конечную формулу для решения задачи:

\(F=k\triangle x1=10\ast0,04=0,4\)

Ответ: сила равна 0,4 Н.

Задача 3

Один из тренажеров в спортивном зале высотой 2 м состоит из двух пружин, которые закреплены на потолке. Их длина одинакова (40 см), а жесткости обозначены k1, k2. При приложении к одной из пружин силы 360 Н (в точке А), нижняя ее часть пружина опустится до самого пола. Потянув в точке В и приложив силу 240 Н, коснется пола сама эта точка. Какова жесткость пружин?

Прикладывая усилия к точке А, вызываем растяжение только пружины сверху. Когда ее длина достигнет 1,6 м, нижняя коснется пола. Таким образом, верхняя удлинилась на 1,2 м.

\(L+\triangle l1=H-L\)

\(\triangle l1=H-2L=1,2\)

\(k1=F1/\triangle l1=360/1,2=300\)

Относительно точки В действуют формулы:

\(F2/k1+F2/k2=H-2L\)

\(240/300+240/k2=1,2\)

Значит \(k2=240/0.4=600\)

Ответ: коэффициенты пружин будут равны 300 и 600 Н/м.

Задача 4

Пружина массой 5 кг прикреплена к бруску, который лежит неподвижно на поверхности. Как изменится сила ее натяжения, если угол наклона будет увеличиваться от 30о до 60о?

Как видно из рисунка, брусок испытывает влияние трех сил: тяжести, натяжения пружины, реакции опоры.

Для равновесия бруска необходимо равенство величин:\(mg=Fупр=N=0\)

Откладывая величины на осях координат, выходим на формулы:

\(mg\sin\alpha-\;\;Fупр=0\)

\(N\;-\;mg\;\cos\alpha\;=\;0\)

Из первого уравнения следует: 

\(Fупр=m\ast g\ast\sin\alpha\)

Учитывая, что угол наклона поверхности, на которой расположен брусок, меняется, ΔFyпp можно определить по формуле:

\(\Delta Fyпp\;=\;mg(\sin\alpha2\;-\;\sin\alpha1)\;\)

Подставляя в формулу значения, высчитывают значение искомой силы:

ΔFyпp=5 * 10 * (0,866 — 0,5) = 18,3 Н

Жесткость в физике обозначение

В разделе Домашние задания на вопрос какой буквой обозначается пружина в физике заданный автором Европейский лучший ответ это Нет обозначения пружина, жесткость -К

Привет! Вот подборка тем с ответами на Ваш вопрос: какой буквой обозначается пружина в физике

Ответ от Простофиля Я знаю, что жесткость пружины обозначается «к», а пружина…

Ответ от YOUGOOOOY коэффициент жёсткости — k

Ответ от Игорь Казанжи к

Коэффициент упругости на Википедии Посмотрите статью на википедии про Коэффициент упругости

Список обозначений в физике на Википедии Посмотрите статью на википедии про Список обозначений в физике

Список персонажей телесериала «Стрела» на Википедии Посмотрите статью на википедии про Список персонажей телесериала «Стрела»

Пружины подвески любого транспортного средства выполняют немало важных функций. Правильно подобранные, они оказывают качественное влияние на весь процесс управления автомобилем и его грузоподъемность, делают неровности дорожного покрытия менее заметными для водителя, повышают комфорт при поездках, особенно длительных.

1.12. Сила упругости. Закон Гука window.top.document.title = «1.12. Сила упругости. Закон Гука»;

При деформации тела возникает сила, которая стремится восстановить прежние размеры и форму тела. Эта сила возникает вследствие электромагнитного взаимодействия между атомами и молекулами вещества. Ее называют силой упругости.

Простейшим видом деформации являются деформации растяжения и сжатия (рис. 1.12.1).


Рисунок 1.12.1.Деформация растяжения (x > 0) и сжатия (x < 0). Внешняя сила

При малых деформациях (|x| << l) сила упругости пропорциональна деформации тела и направлена в сторону, противоположную направлению перемещения частиц тела при деформации:

Это соотношение выражает экспериментально установленный закон Гука. Коэффициент k называется жесткостью тела. В системе СИ жесткость измеряется в ньютонах на метр (Н/м). Коэффициент жесткости зависит от формы и размеров тела, а также от материала. В физике закон Гука для деформации растяжения или сжатия принято записывать в другой форме. Отношение ε = x / l называется относительной деформацией, а отношение σ = F / S = –Fупр / S, где S – площадь поперечного сечения деформированного тела, называется напряжением. Тогда закон Гука можно сформулировать так: относительная деформация ε пропорциональна напряжению σ:

Коэффициент E в этой формуле называется модулем Юнга. Модуль Юнга зависит только от свойств материала и не зависит от размеров и формы тела. Модуль Юнга различных материалов меняется в широких пределах. Для стали, например, E ≈ 2·1011 Н/м2, а для резины E ≈ 2·106 Н/м2, т. е. на пять порядков меньше.

Закон Гука может быть обобщен и на случай более сложных деформаций. Например, при деформации изгиба упругая сила пропорциональна прогибу стержня, концы которого лежат на двух опорах (рис. 1.12.2).


Рисунок 1.12.2.Деформация изгиба.

Упругую силу действующую на тело со стороны опоры (или подвеса), называют силой реакции опоры. При соприкосновении тел сила реакции опоры направлена перпендикулярно поверхности соприкосновения. Поэтому ее часто называют силой нормального давления. Если тело лежит на горизонтальном неподвижном столе, сила реакции опоры направлена вертикально вверх и уравновешивает силу тяжести: Сила с которой тело действует на стол, называется .

В технике часто применяются спиралеобразные пружины (рис. 1.12.3). При растяжении или сжатии пружин возникают упругие силы, которые также подчиняются закону Гука. Коэффициент k называют жесткостью пружины. В пределах применимости закона Гука пружины способны сильно изменять свою длину. Поэтому их часто используют для измерения сил. Пружину, растяжение которой проградуировано в единицах силы, называют динамометром. Следует иметь в виду, что при растяжении или сжатии пружины в ее витках возникают сложные деформации кручения и изгиба.

Рисунок 1.12.3.Деформация растяжения пружины.   

В отличие от пружин и некоторых эластичных материалов (резина) деформация растяжения или сжатия упругих стержней (или проволок) подчиняются линейному закону Гука в очень узких пределах. Для металлов относительная деформация ε = x / l не должна превышать 1 %. При больших деформациях возникают необратимые явления (текучесть) и разрушение материала.

Модель.
Закон Гука

Вычисление работы силы упругости

Груз совершил известное перемещение, величину силы упругости мы также знаем, векторы перемещения и силы упругости параллельны. Казалось бы, все ясно – нужно умножить величину силы на величину перемещения и получить значение работы. Однако здесь не все так просто – разберемся почему.

О чем нам говорит формула, которая выражает величину силы упругости? О том, что сила упругости – величина не постоянная, она меняется по мере перемещения груза. И действительно, величина этой силы, как мы видим из формулы, зависит от координаты центра груза. Формула же для работы силы, которую мы применяли раньше, справедлива лишь в том случае, если сила не меняет свою величину по мере движения. Как же тогда быть? Один из вариантов выхода из данной ситуации мог бы состоять в том, что мы применим такой же метод, который применялся нами ранее в разделе кинематика при расчете перемещения тела, движущегося равноускоренно.

Можно всю траекторию движения груза разбить на очень маленькие участки (участки, в пределах которых силу упругости можно считать практически постоянной). Далее в пределах каждого такого участка мы можем рассчитать работу силы упругости ввиду ее практического постоянства. Затем работа на всей области движения груза будет складываться из всех этих маленьких работ на этих участках. Таким образом, мы сможем посчитать работу силы упругости на всей траектории движения груза. На рис. 4 приведены детали такого расчета.

Рис. 4. Зависимость силы упругости от координаты движения

Видно, что если отложить на графике зависимость модуля силы упругости от модуля координаты груза, затем проделать описанное выше разбиение на маленькие участки, то величина работы на каждом маленьком участке численно равна площади фигуры, ограниченной графиком: осью абсцисс и двумя перпендикулярами к этой оси (см. рис. 5).

Рис. 5. Площадь фигуры

Если просуммировать значение работы на каждом участке (площадь маленьких фигур), то получим площадь большой фигуры, показанной на рис. 6.

Рис. 6. Площадь большой фигуры

Поскольку данная фигура является прямоугольной трапецией, то мы можем воспользоваться формулой для расчета площади такой фигуры – это полусумма оснований, умноженная на высоту. В результате преобразований получим такую формулу – работа равна разности между величиной:

К этому результату можно прийти и несколько иным способом. Для вычисления работы силы упругости в этом способе необходимо просто взять среднее значение силы упругости и умножить его на перемещение тела. Это утверждение можно записать как:

,

где  среднее значение силы упругости, которое равно полусумме начального и конечного ее значений. Если данное выражение  подставить в формулу для работы, то при помощи простых алгебраических преобразований мы получим то же самое выражение, что получали ранее:

Как видно из этой формулы, работа зависит лишь от начальной и конечной координаты центра груза, и еще одно замечание: как видно из последней формулы, работа силы упругости никоим образом не зависит от массы груза. Это обусловлено тем, что и сама сила упругости не зависит от этой массы.

Теперь внимательнее посмотрим на последнюю формулу – если вынести -1 за скобки, то получим, что работа есть взятая со знаком минус разность между значениями некоторой величины, равной половине произведения жесткости пружины на квадрат ее удлинения в конечный и начальный моменты времени.

Вспомним, как мы поступили при расчете работы силы тяжести на прошлом уроке. В тот раз мы столкнулись с новой для нас физической величиной, разность между значениями которой в конечной и начальной моменты времени равнялась взятой со знаком « — » работе силы тяжести. Это величина, равная произведению массы тела на ускорение свободного падения и высоту, на которую было поднято тело над некоторым уровнем, мы назвали потенциальной энергией тела, поднятого над землей.

Что такое кольцевая жесткость труб, и на что она влияет?

Давайте познакомимся с одним из базовых идентификаторов, на который стоит обращать внимание при выборе канализационных труб. Это кольцевая жесткость: согласно EN, а также ДСТУ Б В.2.5-32:2007 стандарта, по ней определяется и сфера применения, и условия монтажа труб

Обозначается она как S HTMLR/HTML и измеряется в мега Паскалях или килоньютонах на метр.

Значения этого показателя имеют шаг в степенях числа 2 – в геометрической прогрессии 2, 4, 8 и т.д.

Кольцевая жесткость измеряется пропорционально обычной, интерпретируется по формуле:

Где Е – это модуль упругости, тоже измеряемый в мега Паскалях, l – момент инерции, Dm – диаметр трубы. Так, для труб полипропиленовых с гладкой внутренней поверхностью формула представляется с уже известным моментом инерции, равным 12.

Вывод : чем тоньше труба, тем меньше кольцевая жесткость (при сравнении равных диаметров).

Вычисление коэффициента жесткости опытным методом

С помощью несложного опыта можно самостоятельно рассчитать, чему будет равен коэффициент Гука. Для проведения эксперимента понадобятся:

  • линейка;
  • пружина;
  • груз с известной массой.

Последовательность действий для опыта такова:

  1. Необходимо закрепить пружину вертикально, подвесив ее к любой удобной опоре. Нижний край должен остаться свободным.
  2. При помощи линейки измеряется ее длина и записывается как величина x1.
  3. На свободный конец нужно подвесить груз с известной массой m.
  4. Длина пружины измеряется в нагруженном состоянии. Обозначается величиной x2.
  5. Подсчитывается абсолютное удлинение: x = x2-x1. Для того чтобы получить результат в международной системе единиц, лучше сразу перевести его из сантиметров или миллиметров в метры.
  6. Сила, которая вызвала деформацию, — это сила тяжести тела. Формула для ее расчета — F = mg, где m — это масса используемого в эксперименте груза (переводится в кг), а g — величина свободного ускорения, равная приблизительно 9,8.
  7. После проведенных расчетов остается найти только сам коэффициент жесткости, формула которого была указана выше: k = F/x.

Жёсткость деформируемых тел при их соединении

Параллельное соединение пружин.


Последовательное соединение пружин.

При соединении нескольких упруго деформируемых тел (далее для краткости — пружин) общая жёсткость системы будет меняться. При параллельном соединении жёсткость увеличивается, при последовательном — уменьшается.

Параллельное соединение

При параллельном соединении n{\displaystyle n} пружин с жёсткостями, равными k1,k2,k3,…,kn,{\displaystyle k_{1},k_{2},k_{3},…,k_{n},} жёсткость системы равна сумме жёсткостей, то есть k=k1+k2+k3+…+kn.{\displaystyle k=k_{1}+k_{2}+k_{3}+…+k_{n}.}

Доказательство

В параллельном соединении имеется n{\displaystyle n} пружин с жёсткостями k1,k2,…,kn.{\displaystyle k_{1},k_{2},…,k_{n}.} Из III закона Ньютона, F=F1+F2+…+Fn.{\displaystyle F=F_{1}+F_{2}+…+F_{n}.}
(К ним прикладывается сила F{\displaystyle F}. При этом к пружине 1 прикладывается сила F1,{\displaystyle F_{1},} к пружине 2 сила F2,{\displaystyle F_{2},} … , к пружине n{\displaystyle n} сила Fn.{\displaystyle F_{n}.})

Теперь из закона Гука (F=−kx{\displaystyle F=-kx}, где x — удлинение) выведем: F=kx;F1=k1x;F2=k2x;…;Fn=knx.{\displaystyle F=kx;F_{1}=k_{1}x;F_{2}=k_{2}x;…;F_{n}=k_{n}x.}
Подставим эти выражения в равенство (1):
kx=k1x+k2x+…+knx;{\displaystyle kx=k_{1}x+k_{2}x+…+k_{n}x;} сократив на x,{\displaystyle x,} получим:
k=k1+k2+…+kn,{\displaystyle k=k_{1}+k_{2}+…+k_{n},} что и требовалось доказать.

Последовательное соединение

При последовательном соединении n{\displaystyle n} пружин с жёсткостями, равными k1,k2,k3,…,kn,{\displaystyle k_{1},k_{2},k_{3},…,k_{n},} общая жёсткость определяется из уравнения: 1k=(1k1+1k2+1k3+…+1kn).{\displaystyle 1/k=(1/k_{1}+1/k_{2}+1/k_{3}+…+1/k_{n}).}

Доказательство

В последовательном соединении имеется n{\displaystyle n} пружин с жёсткостями k1,k2,…,kn.{\displaystyle k_{1},k_{2},…,k_{n}.}
Из закона Гука (F=−kl{\displaystyle F=-kl}, где l — удлинение) следует, что F=k⋅l.{\displaystyle F=k\cdot l.} Сумма удлинений каждой пружины равна общему удлинению всего соединения l1+l2+…+ln=l.{\displaystyle l_{1}+l_{2}+…+l_{n}=l.}

На каждую пружину действует одна и та же сила F.{\displaystyle F.} Согласно закону Гука, F=l1⋅k1=l2⋅k2=…=ln⋅kn.{\displaystyle F=l_{1}\cdot k_{1}=l_{2}\cdot k_{2}=…=l_{n}\cdot k_{n}.} Из предыдущих выражений выведем: l=Fk,l1=Fk1,l2=Fk2,…,ln=Fkn.{\displaystyle l=F/k,\quad l_{1}=F/k_{1},\quad l_{2}=F/k_{2},\quad …,\quad l_{n}=F/k_{n}.} Подставив эти выражения в (2) и разделив на F,{\displaystyle F,} получаем 1k=1k1+1k2+…+1kn,{\displaystyle 1/k=1/k_{1}+1/k_{2}+…+1/k_{n},} что и требовалось доказать.

Сила упругости и закон Гука

Для начала определим основные термины, которые будут использоваться в данной статье. Известно, если воздействовать на тело извне, оно либо приобретет ускорение, либо деформируется. Деформация — это изменение размеров или формы тела под влиянием внешних сил. Если объект полностью восстанавливается после прекращения нагрузки, то такая деформация считается упругой; если же тело остается в измененном состоянии (например, согнутом, растянутом, сжатым и т. д. ), то деформация пластическая.

Примерами пластических деформаций являются:

  • лепка из глины;
  • погнутая алюминиевая ложка.

В свою очередь, упругими деформациями будут считаться:

  • резинка (можно растянуть ее, после чего она вернется в исходное состояние);
  • пружина (после сжатия снова распрямляется).

В результате упругой деформации тела (в частности, пружины) в нем возникает сила упругости, равная по модулю приложенной силе, но направленная в противоположную сторону. Сила упругости для пружины будет пропорциональна ее удлинению. Математически это можно записать таким образом:

где F — сила упругости, x — расстояние, на которое изменилась длина тела в результате растяжения, k — необходимый для нас коэффициент жесткости. Указанная выше формула также является частным случаем закона Гука для тонкого растяжимого стержня. В общей форме этот закон формулируется так: «Деформация, возникшая в упругом теле, будет пропорциональна силе, которая приложена к данному телу». Он справедлив только в тех случаях, когда речь идет о малых деформациях (растяжение или сжатие намного меньше длины исходного тела).

Типы пружин

Пружины можно классифицировать по направлению прилагаемой нагрузки:

  • пружины растяжения; предназначены для работы в режиме растягивания, при деформации их длина увеличивается; как правило, такие устройства имеют нулевой шаг, т.е. намотаны «виток к витку»; примером могут служить пружины в весах-безменах, пружины для автоматического закрытия дверей и т.д.;
  • пружины сжатия под нагрузкой, напротив, укорачиваются; в исходном состоянии между их витками есть некоторое расстояние, как, например, в амортизаторах автомобильных подвесок.

В данной статье рассматриваются пружины, представляющие собой цилиндрические спирали. В технике применяется много других разновидностей упругих устройств: пружины в виде плоских спиралей (используются в механических часах), в виде полос (рессоры), пружины кручения (в точных весах), тарельчатые (сжимающиеся конические поверхности) и т.п. Своего рода пружинами являются амортизирующие изделия из полимерных эластичных материалов, прежде всего резины. Во всех этих устройствах используется один и тот же принцип — запасать энергию упругой деформации и возвращать ее.

Готовые работы на аналогичную тему

  • Курсовая работа Жесткость пружины, формула 410 руб.
  • Реферат Жесткость пружины, формула 220 руб.
  • Контрольная работа Жесткость пружины, формула 210 руб.

Получить выполненную работу или консультацию специалиста по вашему учебному проекту Узнать стоимость

Оцените статью
Рейтинг автора
5
Материал подготовил
Андрей Измаилов
Наш эксперт
Написано статей
116
Добавить комментарий