Как найти коэффициент жёсткости пружины: формула, определение

Вычисление работы силы упругости

Груз совершил известное перемещение, величину силы упругости мы также знаем, векторы перемещения и силы упругости параллельны. Казалось бы, все ясно – нужно умножить величину силы на величину перемещения и получить значение работы. Однако здесь не все так просто – разберемся почему.

О чем нам говорит формула, которая выражает величину силы упругости? О том, что сила упругости – величина не постоянная, она меняется по мере перемещения груза. И действительно, величина этой силы, как мы видим из формулы, зависит от координаты центра груза. Формула же для работы силы, которую мы применяли раньше, справедлива лишь в том случае, если сила не меняет свою величину по мере движения. Как же тогда быть? Один из вариантов выхода из данной ситуации мог бы состоять в том, что мы применим такой же метод, который применялся нами ранее в разделе кинематика при расчете перемещения тела, движущегося равноускоренно.

Можно всю траекторию движения груза разбить на очень маленькие участки (участки, в пределах которых силу упругости можно считать практически постоянной). Далее в пределах каждого такого участка мы можем рассчитать работу силы упругости ввиду ее практического постоянства. Затем работа на всей области движения груза будет складываться из всех этих маленьких работ на этих участках. Таким образом, мы сможем посчитать работу силы упругости на всей траектории движения груза. На рис. 4 приведены детали такого расчета.

Рис. 4. Зависимость силы упругости от координаты движения

Видно, что если отложить на графике зависимость модуля силы упругости от модуля координаты груза, затем проделать описанное выше разбиение на маленькие участки, то величина работы на каждом маленьком участке численно равна площади фигуры, ограниченной графиком: осью абсцисс и двумя перпендикулярами к этой оси (см. рис. 5).

Рис. 5. Площадь фигуры

Если просуммировать значение работы на каждом участке (площадь маленьких фигур), то получим площадь большой фигуры, показанной на рис. 6.

Рис. 6. Площадь большой фигуры

Поскольку данная фигура является прямоугольной трапецией, то мы можем воспользоваться формулой для расчета площади такой фигуры – это полусумма оснований, умноженная на высоту. В результате преобразований получим такую формулу – работа равна разности между величиной:

К этому результату можно прийти и несколько иным способом. Для вычисления работы силы упругости в этом способе необходимо просто взять среднее значение силы упругости и умножить его на перемещение тела. Это утверждение можно записать как:

,

где  среднее значение силы упругости, которое равно полусумме начального и конечного ее значений. Если данное выражение  подставить в формулу для работы, то при помощи простых алгебраических преобразований мы получим то же самое выражение, что получали ранее:

Как видно из этой формулы, работа зависит лишь от начальной и конечной координаты центра груза, и еще одно замечание: как видно из последней формулы, работа силы упругости никоим образом не зависит от массы груза. Это обусловлено тем, что и сама сила упругости не зависит от этой массы.

Теперь внимательнее посмотрим на последнюю формулу – если вынести -1 за скобки, то получим, что работа есть взятая со знаком минус разность между значениями некоторой величины, равной половине произведения жесткости пружины на квадрат ее удлинения в конечный и начальный моменты времени.

Вспомним, как мы поступили при расчете работы силы тяжести на прошлом уроке. В тот раз мы столкнулись с новой для нас физической величиной, разность между значениями которой в конечной и начальной моменты времени равнялась взятой со знаком « — » работе силы тяжести. Это величина, равная произведению массы тела на ускорение свободного падения и высоту, на которую было поднято тело над некоторым уровнем, мы назвали потенциальной энергией тела, поднятого над землей.

В каких условиях применяется закон Гука

Универсальным вариантом для применения закона Гука является тонкий стержень. \(F\) в данном случае выражает ту силу, которая к нему прилагается. Зависит она от разницы длины до и после воздействия, а также коэффициента упругости материала.

\(F=k\ast\Delta l\)

Как было сказано выше, \(k\) зависит от качества материала и габаритов. Выражая названую зависимость через площадь сечения и длину, формула для коэффициента получает следующий вид: \(F=ES/L\). Буквой \(Е\) здесь обозначается все тот же модуль Юнга – механические свойства материала. Далее следует ввести понятия относительного удлинения:

\(\xi=\Delta l/L\)

и напряжения в поперечном сечении:

\(\sigma=F/S\)

Конечная формула закона Гука может выглядеть и так:

\(\triangle l=FL/ES\)

Для понимания того, какие условия необходимы для функционирования закона Гука, достаточно рассмотреть два понятия: среда и сила. В таких средах, как газы, жидкости, особенно вязкие, механические особенности процессов упругости не действуют. В то же время даже очень интенсивная сила не будет работать в ряде сред.

Обязательные условия для ее проявления:

  1. Незначительные изменения формы.
  2. Достаточная упругость материала.
  3. В материале ни при каком воздействии не происходит изменений линейного характера.

Рассмотрим график, отражающий зависимости:

Нижний левый квадрат демонстрирует линейную зависимость при не интенсивных растяжениях. Затем пунктирная линия демонстрирует потерю этой «линейности». Визуально это проявляется «непослушанием» пружины: она перестает принимать свой первоначальный вид при интенсивном растяжении. Если его вовсе не прекращать, может нарушиться природная структура материала, произойдет полный излом.

Аналогичная картина наблюдается при процессе сжатия. В правом верхнем квадрате отражены следующие особенности:

При небольшом сжатии – связь прямая (красная линия).

При увеличении силы зависимость теряет «линейность» — см. пунктир.

Сильное сжатие заставляет пружину нагреваться, она теряет первичные свойства. Происходит слипание витков и разрушение структуры материала.

Физические характеристики пружин

Цилиндрические пружины характеризуются рядом параметров, сочетание которых обуславливает их жесткость – способность сопротивляться деформации:

  1. материал; пружины чаще всего изготавливают из стальной проволоки, причем сталь в них применялася особая, ее характеризует среднее или высокое содержание углерода, низкое содержание других примесей (низколегированный сплав) и особая термообработка (закалка), придающая материалу дополнительную упругость;
  2. диаметр проволоки; чем он меньше, тем эластичнее пружина, но тем меньше ее способность запасать энергию; пружины сжатия изготавливают, как правило, из более толстой проволоки, чем пружины растяжения;
  3. форма сечения проволоки; не всегда проволока, из которой намотана пружина, имеет круглое сечение; уплощенное сечение имеют пружины сжатия, чтобы при максимальном сокращении длины (виток «садится» на соседний виток) конструкция была более устойчивой;
  4. длина и диаметр пружины; длину пружины следует отличать от длины проволоки, из которой она намотана; эти два параметра согласуются через количество витков и диаметр пружины, который, в свою очередь, не следует путать с диаметром проволоки.

Задай вопрос специалистам и получи ответ уже через 15 минут!

Существуют и другие физические характеристики, влияющие на работоспособность пружин. Например, при повышении температуры металл становится менее упругим, а при существенном ее понижении может стать хрупким. При интенсивной эксплуатации пружина со временем теряет часть упругости по причине постепенного разрушения связей между атомами кристаллической решетки.

Приведенный коэффициент — жесткость

Приведенный коэффициент жесткости определяется из условия равенства величин потенциальной энергии амортизатора и эквивалентной пружины, как было показано в § 48, и в общем случае может быть нелинейной функцией перемещения у, отсчитываемого от положения статического равновесия.

Приведенные коэффициенты жесткости могут быть определены методами сопротивления материалов. Причем для деталей малой длины ( si / sO 3) следует учитывать влияние сдвига, умножая приведенный коэффициент жесткости на коэффициент сдвига CQ, определяемый в зависимости от формы детали.

Приведенный коэффициент жесткости подвески дан с учетом жесткости упругих элементов ее и пневматических шин.

Приведенным коэффициентом жесткости, кинематической цепи называется коэффициент жесткости безмассовой пружины, имеющей ту же величину потенциальной энергии, что и заменяемая кинематическая цепь. Иногда приведенный коэффициент жесткости называют обобщенным, или квазиупругим.

В этом случае приведенный коэффициент жесткости равен силе ( или моменту), вызывающей в направлении действия перемещение точки приведения, равное единице.

В рассмотренном примере зубчатого механизма приведенный коэффициент жесткости имеет постоянную велич-и-ну, если передаточные отношения — постоянные.

При параллельном соединении упругих звеньев приведенный коэффициент жесткости определяется из условия равенства деформаций звеньев и потенциальных энергий до и после приведения.

Далее излагаются способы определения приведенной массы, приведенного коэффициента жесткости упругой связи и приведенной силы, знание которых необходимо для решения простейшей задачи о колебании центра приведения. После установления основных свойств нормальных функций и последовательности динамического расчета рекомендуемый метод исследования применяется к разным типам судовых конструкций — различно закрепленным балкам и пластинам, причем по ходу изложения устанавливаются способы отыскания форм и частот главных колебаний первого, второго и более высоких тонов.

Аналогично приведенной массе или приведенному моменту инерции, приведенный коэффициент жесткости может быть или постоянным или переменным, зависящим от обобщенных координат механизма.

Коэффициенты жесткости с, и с соответствуют коэффициенту жесткости клапанной пружины; с2 — коэффициенту жесткости коромысла; сг — приведенному коэффициенту жесткости штанги 2; c — приведенному коэффициенту жесткости участка распределительного вала; с0 — приведенной жесткости механизма. Для упрощения расчетной схемы коэффициенты демпфирования k принимают в первом приближении равными нулю.

Схема кривошипно-коромыслового механизма с упругими шатуном и коромыслом.

Таким образом, в рычажных механизмах переменными являются не толь — 3 ко приведенные силы и приведенные массы, но и приведенный коэффициент жесткости.

& о — Коэффициенты жесткости с, и с соответствуют коэффициенту жесткости клапанной пружины; с2 — коэффициенту жесткости коромысла; с3 — приведенному коэффициенту жесткости штанги 2 с4 — приведенному коэффициенту жесткости участка распределительного вала; с0 — приведенной жесткости механизма. Для упрощения расчетной схемы коэффициенты демпфирования k принимают в первом приближении равными нулю.

После приведения жесткостей получаем одномассовую динамическую модель ( рис. 66 6), в которой на звено приведения с массой m воздействует линейная пружина с приведенным коэффициентом жесткости са.

Для определения кривой прогиба отбрасываем массу МЕ и прикладываем в точке Е силу Р; далее по кривой прогиба находим обычным путем приведенную массу трубопровода Мпр и приведенный коэффициент жесткости спр.

Практические занятия

Механики и физики обозначают с помощью k, c и D коэффициент упругости, пропорциональности, жесткости. Смысл математической записи одинаковый. Численно показатель равняется силе, которая создаёт колебания на одну единицу длины. На практических работах по физике используется в качестве последней величины 1 метр.

Чем выше k, тем больше сопротивление предмета относительно деформации. Дополнительно коэффициент показывает степень устойчивости тела к колебаниям со стороны внешней нагрузки. Параметр зависит от длины и диаметра винтового изделия, количества витков, сырья. Единица измерения жесткости пружины — Н/м.

На практике перед школьниками и механиками может стоять более сложная задача, к примеру, найти общую жёсткость. В таком случае пружины соединены последовательным либо параллельным способом. В первом случае уменьшается суммарная жесткость. Если пружины расположены последовательно, используется следующая формула: 1/k = 1/k1 + 1/k2 + … + 1/ki, где:

  • k — суммарная жёсткость соединений;
  • k1 …ki — жёсткость каждого элемента системы;
  • i — число пружин в цепи.

Если невесомые (расположены горизонтально) предметы соединены параллельно, значение общего k будет увеличиваться. Величина вычисляется по следующей формуле: k = k1 + k2 + … + ki.

Основная методика для вычислений

На практике коэффициент Гука определяется самостоятельно. Для эксперимента потребуется пружина, линейка, груз с определённой массой. Необходимо соблюдать следующую последовательность действий:

  1. Пружина фиксируется вертикально. Для этого используется любая удобная опора со свободной нижней частью.
  2. Линейкой измеряется длина предмета. Результат записывается как х1.
  3. На свободный конец подвешивается груз с известной массой m.
  4. Измеряется длина изделия под воздействием амплитуды. Вывод записывается как х2.
  5. Производит подсчёт абсолютного удлинения: x = x2-x1. Для определения энергии (силы) и k в международной системе СИ осуществляется перевод длины из разных единиц измерения в метры.
  6. Сила, спровоцировавшая деформацию, считается силой тяжести тела. Она рассчитывается по формуле: F = mg, где м является массой используемого груза (вес переводится в килограммы), а g (равен 9,8) — постоянная величина, с помощью которой отмечается ускорение свободного падения.

Если вышеописанные вычисления произведены, необходимо найти значение коэффициента жёсткости. Используется закон Гука, из которого следует, что k=F/x.

Решение задач

Для нахождения жёсткости в случае использования разных предметов, включая пружинные маятники с разной частотой колебаний, применяется формула Гука либо следствие, вытекающее из неё.

Задача № 1. Пружина имеет длину 10 см. На неё оказывается сила в 100 Н. Изделие растянулось на 14 см. Нужно найти k.

Решение: предварительно вычисляется абсолютное удлинение: 14−10=4 см. Результат переводится в метры: 0,04 м. Используя основную формулу, находится k. Его значение равняется 2500 Н/м.

Задача № 2. На пружину подвешивается груз массой 10 кг. Изделие растягивается на 4 см. Нужно найти длину, на которую растянется пружина, если использовать груз массой в 25 кг.

Решение: Определяется сила тяжести путем умножения 10 кг на 9.8. Результат записывается в Ньютонах. Определяется k=98/0.04=2450 Н/м. Рассчитывается, с какой силой воздействует второй груз: F=mg=245 Н. Для нахождения абсолютного удлинения используется формула x=F/k. Во втором случае х равняется 0,1 м.

Отличия пружин подвески и их маркировка

Основным идентификационным параметром любой пружины служит ее наружный диаметр. Производители не могут его самопроизвольно изменить, так как этот размер определяется конструктивными особенностями самого автомобиля. Все остальные параметры могут быть абсолютно различными. Так производители могут:

  1. изменить диаметр прута, из которого она изготавливается и даже использовать прут, имеющий диаметр переменного значения;
  2. изготавливать пружины одинаковой высоты, но различной жесткости;
  3. изменить межвитковое расстояние и количество витков, сохраняя при этом жесткость.

Статья в тему: Как зарегистрироваться на экзамен в ГИБДД через госуслуги? Поэтому на заводах перед установкой проводят контроль статистической нагрузки. Проводится такая операция следующим образом: измеряют высоту пружины, сжав ее с определенным усилием. Так как для каждой конкретной модели автомобиля высота в сжатом состоянии регламентирована полем допуска, то детали, не попавшие в это поле, выбраковываются.

Пружины, попавшие в границы верхнего поля допуска относят к классу А (длинные), а в категорию В (короткие) попадают те, что имеют высоту в пределах нижнего поля допуска. Далее пружины одного класса маркируют краской, причем цвет маркировки зависит от модели автомобиля, на котором они должны быть установлены.

  • Пружины класса А автомобилей ВАЗ маркируют по цвету желтой, белой, коричневой и оранжевой красками.
  • Вид В также маркируют по цвету, но зеленой, голубой, синей и черной красками.

Маркировка по цвету наносится на внешнюю сторону витков в виде цветной полоски. Обилие цветов маркировочной краски объясняется тем, что с целью уменьшения влияния коррозии, они подвергают специальному покрытию (хлоркаучуковая эмаль или защитное эпоксидное покрытие), которое также бывает разного цвета (черное, серое, синее, белое, голубое) и определяет как модель автомобиля, так и назначение пружины (передняя или задняя). Причем на заводах, выпускающих различные модели ВАЗ и «Лада», передние элементы окрашены, как правило, в черный цвет. Исключение составляют только пружины с переменным межвитковым расстоянием (шагом) — они окрашиваются в голубой цвет.

Статья в тему: Самостоятельное приготовление электролита для АКБ

Типы пружин

Пружины можно классифицировать по направлению прилагаемой нагрузки:

  • пружины растяжения; предназначены для работы в режиме растягивания, при деформации их длина увеличивается; как правило, такие устройства имеют нулевой шаг, т.е. намотаны «виток к витку»; примером могут служить пружины в весах-безменах, пружины для автоматического закрытия дверей и т.д.;
  • пружины сжатия под нагрузкой, напротив, укорачиваются; в исходном состоянии между их витками есть некоторое расстояние, как, например, в амортизаторах автомобильных подвесок.

В данной статье рассматриваются пружины, представляющие собой цилиндрические спирали. В технике применяется много других разновидностей упругих устройств: пружины в виде плоских спиралей (используются в механических часах), в виде полос (рессоры), пружины кручения (в точных весах), тарельчатые (сжимающиеся конические поверхности) и т.п. Своего рода пружинами являются амортизирующие изделия из полимерных эластичных материалов, прежде всего резины. Во всех этих устройствах используется один и тот же принцип — запасать энергию упругой деформации и возвращать ее.

Готовые работы на аналогичную тему

  • Курсовая работа Жесткость пружины, формула 410 руб.
  • Реферат Жесткость пружины, формула 220 руб.
  • Контрольная работа Жесткость пружины, формула 210 руб.

Получить выполненную работу или консультацию специалиста по вашему учебному проекту Узнать стоимость

Как использовать пружины соответственно их классу

Оба класса – «А» и «В», имеют абсолютно рабочие характеристики, и могут устанавливаться на автомобиль в равной степени. Единственное, что следует помнить при установке – цвета пружин подвески должны быть идентичны по обе стороны автомобиля. В противном случае может образоваться небольшой, но постоянный крен кузова на одну из сторон, что существенно ухудшит управляемость автомобилем и его устойчивость на дороге. Кроме того, если цвет пружин по жесткости будет отличаться, это приведет к ускоренному износу узлов всей «ходовки».

Специалисты достаточно часто говорят о необходимости использования на одном ТС элементов только одного класса. В крайнем случае, допускается устанавливать на переднюю ось пружины класса «А», на заднюю «В». Но ни в коем случае не наоборот – это категорически недопустимо. Чтобы избежать путаницы при самостоятельной замене, маркировка по цветам должна совпадать, так же как и их класс.

Видео

Из этого видео вы узнаете, как определить жесткость пружины.

Чем большей деформации подвергается тело, тем значительней в нем возникает сила упругости. Это значит, что деформация и сила упругости взаимосвязаны, и по изменению одной величины можно судить об изменении другой. Так, зная деформацию тела, можно вычислить возникающую в нем силу упругости. Или, зная силу упругости, определить степень деформации тела.

Если к пружине подвешивать разное количество гирек одинаковой массы, то чем больше их будет подвешено, тем сильнее пружина растянется, то есть деформируется. Чем больше растянута пружина, тем большая в ней возникает силы упругости. Причем опыт показывает, что каждая следующая подвешенная гирька увеличивает длину пружины на одну и туже величину.

Так, например, если исходная длина пружины была 5 см, а подвешивание на ней одной гирьки увеличило ее на 1 см (т. е. пружина стала длиной 6 см), то подвешивание двух гирек увеличит ее на 2 см (общая длина составит 7 см), а трех — на 3 см (длина пружины будет 8 см).

Еще до опыта известно, что вес и возникающая под его действием сила упругости находятся друг с другом в прямопропорциональной зависимости. Кратное увеличение веса во столько же раз увеличит силу упругости. Опыт же показывает, что деформация точно также зависит от веса: кратное увеличение веса во столько же раз увеличивает изменения в длине. Это значит, что, исключив вес, можно установить прямопропорциональную зависимость между силой упругости и деформацией.

Если обозначить удлинение пружины в результате ее растяжения как x или как ∆ l ( l 1 – l , где l — начальная длина, l 1 — длина растянутой пружины), то зависимость силы упругости от растяжения можно выразить такой формулой:

В формуле используется коэффициент k . Он показывает, в какой именно зависимости находятся сила упругости и удлинение. Ведь удлинение на каждый сантиметр может увеличивать силу упругости одной пружины на 0,5 Н, второй на 1 Н, а третьей на 2 Н. Для первой пружины формула будет выглядеть как Fупр = 0,5x, для второй — Fупр = x, для третьей — Fупр = 2x.

Коэффициент k называют жесткостью пружины. Чем жестче пружина, тем труднее ее растянуть, и тем большее значение будет иметь k. А чем больше k, тем больше будет сила упругости (Fупр) при равных удлинения (x) разных пружин.

Жесткость зависит от материала, из которого изготовлена пружина, ее формы и размеров.

Единицей измерения жесткости является Н/м (ньютон на метр). Жесткость показывает, сколько ньютонов (сколько сил) надо приложить к пружине, чтобы растянуть ее на 1 м. Или насколько метров растянется пружина, если приложить для ее растяжения силу в 1 Н. Например, к пружине приложили силу в 1 Н, и она растянулась на 1 см (0,01 м). Это значит, что ее жесткость равна 1 Н / 0,01 м = 100 Н/м.

Также, если обратить внимание на единицы измерения, то станет понятно, почему жесткость измеряется в Н/м. Сила упругости, как и любая сила, измеряется в ньютонах, а расстояние – в метрах

Чтобы уровнять по единицам измерения левую и правую части уравнения Fупр = kx, надо в правой части сократить метры (то есть поделить на них) и добавить ньютоны (то есть умножить на них).

Соотношение между силой упругости и деформацией упругого тела, описываемое формулой Fупр = kx, открыл английский ученый Роберт Гук в 1660 году, поэтому это соотношение носит его имя и называется законом Гука.

Упругой деформацией является такая, когда после прекращения действия сил, тело возвращается в свое исходное состояние. Бывают тела, которые почти нельзя подвергнуть упругой деформации, а у других она может быть достаточно большой. Например, поставив тяжелый предмет на кусок мягкой глины, вы измените его форму, и этот кусок сам уже не вернется в исходное состояние. Однако если вы растяните резиновый жгут, то после того, как отпустите его, он вернет свои исходные размеры. Следует помнить, что закон Гука применим только для упругих деформаций.

Формула Fупр = kx дает возможность по известным двум величинам вычислять третью. Так, зная приложенную силу и удлинение, можно узнать жесткость тела. Зная, жесткость и удлинение, найти силу упругости. А зная силу упругости и жесткость, вычислить изменение длины.

Тюнинг пружин

И всё же самая популярная причина замены пружин — не поломка и не проседание машины, а тюнинг. Лифт подвески или её занижение, дополнительная жёсткость или плавность хода — всё это поводы для смены пружин. Благо, сейчас в продаже масса вариантов нестандартных пружин на все ходовые модели автомобилей.

Но заниматься кастомизацией нужно с умом, не превращая тюнинг в «колхоз», примеров которого немало. Один из самых распространённых — подрезание пружин: либо своих же, чтобы «малой кровью» занизить подвеску, либо взятых от другой машины, чтобы приспособить их к своей.

Пружина не однородна по всей длине. На концах у нее расположены так называемые опорные витки, задача которых — усиление конструкции, правильное складывание пружины при работе и фиксация ее на посадочном месте. Обрезка опорного витка нарушает весь расчёт пружины, создаёт дополнительные напряжения металла и, спустя какое-то время, приводит к поломке прутка. Резать пружины нельзя ни в коем случае!

Сомнительна и установка «примерно подходящих» пружин от других автомобилей. Нагрузка точно не совпадёт с расчётной, что снизит ресурс пружины, ухудшит работу подвески и повлияет на управляемость. Эксперимент может закончиться и досрочно: неподходящие пружины нередко вылетают из посадочных мест в предельных режимах работы подвески (например, при вывешивании колеса), и машина падает на «брюхо».

Если вы взялись за тюнинг — подбирайте пружины, разработанные именно для вашей машины. И не забывайте, что амортизаторы должны соответствовать им не только по длине, но и по характеристикам: в хороших тюнинговых наборах пружины и амортизаторы неспроста идут одним комплектом.

Зачем требуется маркировка цветом

Цветная маркировка, упрощающая жизнь автолюбителям при выборе, является следствием сложного процесса производства. Он характеризуется огромным количеством сложных технологических операций, которые очень трудно, а зачастую и невозможно, проконтролировать.

Поэтому все производители, осуществляющие массовый выпуск пружин, после изготовления считают необходимым проводить сравнительные анализы продукции. В результате этого появилась классификация по цвету, поскольку только так можно отличить разные по жесткости элементы после изготовления. Конечно, существуют и другие способы определить пружины разных видов, но этот самый простой и надежный.

Формулы и способы расчета пружин из стали круглого сечения по ГОСТ 13765

Пружина сжатия                                                                                                                           Пружина растяжения

Наименование параметра Обозначение Расчетные формулы и значения
Сила пружины при предварительной деформации, Н F 1 Принимается в зависимости от нагрузки пружины
Сила пружины при рабочей деформации (соответствует наибольшему принудительному перемещению подвижного звена в механизме), Н F 3 Принимается в зависимости от нагрузки пружины
Рабочий ход пружины, мм h Принимается в зависимости от нагрузки пружины
Наибольшая скорость перемещения подвижного конца пружины при нагружении или разгрузке, м/с v max Принимается в зависимости от нагрузки пружины
Выносливость пружины, число циклов до разрушения N F Принимается в зависимости от нагрузки пружины
Наружный диаметр пружины, мм D 1 Предварительно принимаются с учетом конструкции узла. Уточняются по таблицам ГОСТ 13766…ГОСТ 13776
Относительный инерционный зазор пружины сжатия. Для пружин растяжения служит ограничением максимальной деформации δ δ = 1 — F 2 / F 3 (1)
Для пружин сжатия классов I и II
δ = 0,05 — 0,25
для пружин растяжения
δ = 0,05 — 0,10
для одножильных пружин класса III
δ = 0,10 — 0,40
для трехжильных класса III
δ = 0,15 — 0,40
Сила пружины при максимальной деформации, Н F 3

Уточняется по таблицам ГОСТ 13766 ÷ ГОСТ 13776

Сила предварительного напряжения (при навивке из холоднотянутой и термообработанной проволоки), Н F (0,1 ÷ 0,25) F 3
Диаметр проволоки, мм d Выбирается по таблицам ГОСТ 13764 ÷ ГОСТ 13776
Диаметр трехжильного троса, мм d 1 Выбирается по таблицам ГОСТ 13764 ÷ ГОСТ 13776
Жесткость одного витка пружины, Н/мм c 1 Выбирается по таблицам ГОСТ 13764 ÷ ГОСТ 13776
Максимальная деформация одного витка пружины, мм s’ (при F = 0)
s» (при F > 0)
Выбирается по таблицам ГОСТ 13764 ÷ ГОСТ 13776
Максимальное касательное напряжение пружины, МПа τ 3

Для трехжильных пружин

Критическая скорость пружины сжатия, м/с v k

Для трехжильных пружин

Модуль сдвига, МПа G Для пружинной сталиG = 7,85 х 104
Динамическая (гравитационная) плотность материала, Н • с2/м4 ρ ρ = γ / g,
где g — ускорение свободного падения, м/с2
γ — удельный вес, Н/м3
Для пружинной стали ρ = 8•103
Жесткость пружины, Н/мм с

Для пружин с предварительным напряжением

Для трехжильных пружин

Число рабочих витков пружины n
Полное число витков пружины n 1

где n2 — число опорных витков

Средний диаметр пружины, мм D

Для трехжильных пружин

Индекс пружины i

Для трехжильных пружин

Рекомендуется назначать от 4 до 12

Коэффициент расплющивания троса в трехжильной пружине, учитывающий увеличение сечения витка вдоль оси пружины после навивки Δ Для трехжильного троса с углом свивки β = 24° определяется по таблице
i 4,0 4,5 5,0 5,5 6,0 7,0 и
более
Δ 1,029 1,021 1,015 1,010 1,005 1,000
Предварительная деформация пружины, мм s 1
Рабочая деформация пружины, мм s 2
Максимальная деформация пружины, мм s 3
Длина пружины при максимальной деформации, мм l 3

где n3 — число обработанных витков

Для трехжильных пружин

Для пружин растяжения с зацепами

Длина пружины в свободном состоянии, мм l
Длина пружины растяжения без зацепов в свободном состоянии, мм l’
Длина пружины при предварительной деформации, мм l 1

Для пружин растяжения

Длина пружины при рабочей деформации, мм l 2

Для пружин растяжения

Шаг пружины в свободном состоянии, мм t

Для трехжильных пружин

Для пружин растяжения

Напряжение в пружине при предварительной деформации, МПа τ 1
Напряжение в пружине при рабочей деформации, МПа τ 2
Коэффициент, учитывающий кривизну витка пружины k

Для трехжильных пружин

Длина развернутой пружины (для пружин растяжения без зацепов), мм l
Масса пружины (для пружин растяжения без зацепов), кг m
Объем, занимаемый пружиной (без учета зацепов пружины), мм 3 V
Зазор между концом опорного витка и соседним рабочим витком пружины сжатия, мм λ Устанавливается в зависимости от формы опорного витка
Внутренний диаметр пружины, мм D 2
Временное сопротивление проволоки при растяжении, МПа R m Устанавливается при испытаниях проволоки или по ГОСТ 9389  и ГОСТ 1071
Максимальная энергия, накапливаемая пружиной, или работа деформации, мДж Для пружин сжатия и растяжения без предварительного напряжения

Для пружин растяжения с предварительным напряжением

Оцените статью
Рейтинг автора
5
Материал подготовил
Андрей Измаилов
Наш эксперт
Написано статей
116
Добавить комментарий