Что нужно знать о цветных металлах: список цветных металлов

Получение алюминия

Алюминий получают из бокситов и нефелинов. Химический состав бокситов выражается формулой Na2(K2) O · Al2O3 · 2SiO2. Бокситы содержат в своем составе 30…70% глинозема Аl2О3, 2…20% кремнезема SiO2, 2…50% окиси железа Fе2О3 и 0,1…10% окиси титана ТiO2.

Производство алюминия состоит из двух основных процессов:

  1. получение глинозема А12О3 из бокситов;
  2. восстановление металлического алюминия электролизом из раствора глинозема в расплавленном криолите (Na3AlF6).

Электролитом служат криолит с добавлением 8…10% глинозема, а также AlF3 и NaF. Образующийся в результате электролиза жидкий алюминий собирается на дне ванны под слоем электролита. Его называют алюминием-сырцом. Алюминий-сырец содержит металлические (Fe, Si, Cu, Zn и др.) и неметаллические (С, АlО3 и др.) примеси, а также газы — кислород, водород, окись и двуокись углерода и др. Эти примеси удаляют хлорированием жидкого алюминия-сырца в ковше. Образующийся при этом парообразный хлористый алюминий АlСl3, проходя через расплавленный алюминий, обволакивает пузырьками частицы примесей и выносит их вместе с газами, растворенными в алюминии.

Первичный алюминий (ГОСТ 11069–2001) делят на следующие группы:

  1. алюминий особой чистоты (марка А999);
  2. алюминий высокой чистоты (4 марки);
  3. алюминий технической чистоты.

ГОСТом предусмотрены восемь марок, допускающих содержание примесей 0,15…1%. Название марки указывает ее чистоту. Например, марка А8 обозначает, что в металле содержится 99,8% алюминия, а в марке А99 — 99,99%.

Алюминий — легкий металл серебристо-белого цвета с высокой электрои теплопроводностью; плотность его 2700 кг/м3, температура плавления зависит от чистоты и колеблется в пределах 660…667°С. В отожженном состоянии алюминий имеет малую прочность (σв = 80…100 МПа), низкую твердость (НВ = 20…40), но обладает высокой пластичностью (δ = 35…40%).

Алюминий хорошо обрабатывается давлением, некоторые его сплавы с разным успехом свариваются. Имеет высокую стойкость против атмосферной коррозии и в пресной воде. На воздухе алюминий быстро окисляется, покрываясь тонкой плотной пленкой окиси, которая не пропускает кислород в толщу металла, что и обеспечивает его защиту от коррозии.

Ботаническое описание

Лазерная маркировка металла. Преимущества и недостатки


Лазерная технология является самым передовым и надежным способом нанесения информации на металл. Такая маркировка имеет неопределенный срок службы, поскольку она не подвержена никаким физическим или химическим воздействиям. Она может применяться по отношению к любому сплаву без каких-то дополнительных условий. Кроме того, явным плюсом лазерной технологии является высокая скорость работы, не оказывающая влияния на уровень работы предприятия. Она не требует больших энергозатрат, не нуждается в расходных материалах и позволяет наносить необходимую информацию даже в труднодоступных местах, которые недосягаемы для других методов маркировки. Все, что нужно для ее осуществления, — это компьютер с системой передачи данных и контроля и непосредственно лазер.

Единственным недостатком лазерной маркировки является нагревание поверхности в процессе нанесения маркировки. Прежде чем отправлять продукцию на склад после нанесения данных некоторое время приходится ждать, пока она остынет.

4.1 Сплавы на основе магния

Достоинством магниевых сплавов является высокая удельная прочность. Предел прочности магниевых сплавов достигает 250-400 МПа при плотности менее 2 грамм на кубический сантиметр. Сплавы в горячем состоянии хорошо куются, прокатываются и прессуются. Магниевые сплавы хорошо обрабатываются резанием (лучше, чем стали, алюминиевые и медные сплавы), хорошо шлифуются и полируются. Удовлетворительно свариваются контактной и дуговой сваркой в среде защитных газов.

К недостаткам магниевых сплавов наряду с низкой коррозионной стойкостью и малым модулем упругости следует отнести плохие литейные свойства, склонность к газонасыщению, окислению и воспламенению при их приготовлении.

Изготовление и установка шкафа

Виды редких металлов

Редкие сплавы, металлы можно разделить на несколько групп зависимо от химических, физических характеристик.

Легкие

К ним относятся химические элементы 1 и 2 группы периодической таблицы Менделеева. Их главное сходство — малый удельный вес. Представители — цезий, литий, рубидий, бериллий. Вторая похожая особенность — высокая химическая активность. Для получения проводится металлотермия, электролиз.

Тугоплавкие

Переходные элементы, которые находятся в 4, 5 и 6 группе периодической таблицы Менделеева. Внутренние электронные уровни у этих металлов достраиваются при переходе одного элемента к соседнему. Они образуют твердые, тугоплавкие, химически устойчивые соединения с различными металлоидами, которые обладают небольшим атомным радиусом.

Для получения применяется технология порошковой металлургии. Из расходного сырья получается металлический порошок, который прессуется в специальных формах и спекается для получения однородного материала.

Таблица Менделеева (Фото: Instagram / techade.ru)

Рассеянные

Особенность — малое количество минералов, в которых содержатся эти металлы или их полное отсутствие. Чаще подобные химические элементы встречаются в виде изоморфных примесей. Еще реже их можно встретить в небольшой концентрации в сторонних минералах.

Единственный прибыльный способ получения — переработка отходов производства основных металлов.

Редкоземельные

Второе название — лантаноиды. В этой группе находится 15 химических элементов. Они имеют похожее строение атомов, электронных уровней. В природе редкоземельные металлы часто попадаются рядом друг с другом. Первый этап переработки расходного сырья — выделение разных соединений, в основном смесей окислов.

Радиоактивные

В этой группе находятся естественные радиоактивные металлы. Основные из них — актиноиды, актиний, радий, полоний. К подгруппе актиноидов относятся уран, протактиний, торий.

Таблица удельного веса сплавов металлов

Удельный вес металлов определяют чаще всего в лабораторных условиях, но в чистом виде они весьма редко применяются в строительстве. Значительно чаще находится применение сплавам цветных металлов и сплавам черных металлов, которые по удельному весу подразделяют на легкие и тяжелые.

Легкие сплавы активно используются современной промышленностью, из-за их высокой прочности и хороших высокотемпературных механических свойств. Основными металлами подобных сплавов выступают титан, алюминий, магний и бериллий. Но сплавы, созданные на основе магния и алюминия, не могут использоваться в агрессивных средах и в условиях высокой температуры.

В основе тяжелых сплавов лежит медь, олово, цинк, свинец. Среди тяжелых сплавов во многих сферах промышленности применяют бронзу (сплав меди с алюминием, сплав меди с оловом, марганцем или железом) и латунь (сплав цинка и меди). Из этих марок сплавов производятся архитектурные детали и санитарно-техническая арматура.

Ниже в справочной таблице приведены основные качественные характеристики и удельный вес наиболее распространенных сплавов металлов. В перечне представлены данные по плотности основных сплавов металлов при температуре среды 20°C.

Список сплавов металлов Плотность сплавов (кг/м 3)
Адмиралтейская латунь — Admiralty Brass (30% цинка, и 1% олова) 8525
Алюминиевая бронза — Aluminum Bronze (3-10% алюминия) 7700 — 8700
Баббит — Antifriction metal 9130 -10600
Бериллиевая бронза (бериллиевая медь) — Beryllium Copper 8100 — 8250
Дельта металл — Delta metal 8600
Желтая латунь — Yellow Brass 8470
Фосфористые бронзы — Bronze — phosphorous 8780 — 8920
Обычные бронзы — Bronze (8-14% Sn) 7400 — 8900
Инконель — Inconel 8497
Инкалой — Incoloy 8027
Ковкий чугун — Wrought Iron 7750
Красная латунь (мало цинка) — Red Brass 8746
Латунь, литье — Brass — casting 8400 — 8700
Латунь, прокат — Brass — rolled and drawn 8430 — 8730
Легкиесплавыалюминия — Light alloy based on Al 2560 — 2800
Легкиесплавымагния — Light alloy based on Mg 1760 — 1870
Марганцовистая бронза — Manganese Bronze 8359
Мельхиор — Cupronickel 8940
Монель — Monel 8360 — 8840
Нержавеющая сталь — Stainless Steel 7480 — 8000
Нейзильбер — Nickel silver 8400 — 8900
Припой 50% олово/ 50% свинец — Solder 50/50 Sn Pb 8885
Светлый антифрикционный сплав для заливки подшипников = штейн с содержанием 72-78% Cu — White metal 7100
Свинцовые бронзы, Bronze — lead 7700 — 8700
Углеродистая сталь — Steel 7850
Хастелой — Hastelloy 9245
Чугуны — Cast iron 6800 — 7800
Электрум (сплав золота с серебром, 20% Au) — Electrum 8400 — 8900

Представленная в таблице плотность металлов и сплавов поможет вам посчитать вес изделия. Методика вычисления массы детали заключается в вычислении ее объема, который затем умножается на плотность материала, из которого она изготовлена. Плотность — это масса одного кубического сантиметра или кубического метра металла или сплава. Рассчитанные на калькуляторе по формулам значения массы могут отличаться от реальных на несколько процентов. Это не потому, что формулы не точные, а потому, что в жизни всё чуть сложнее, чем в математике: прямые углы — не совсем прямые, круг и сфера — не идеальные, деформация заготовки при гибке, чеканке и выколотке приводит к неравномерности ее толщины, и можно перечислить еще кучу отклонений от идеала. Последний удар по нашему стремлению к точности наносят шлифовка и полировка, которые приводят к плохо предсказуемым потерям массы изделия. Поэтому к полученным значениям следует относиться как к ориентировочным.

ОПРЕДЕЛЕНИЕ

В свободном виде алюминий

представляет собой серебристо-белый (рис. 1) легкий металл. Он легко вытягивается в проволоку и прокатывается в тонкие листы.

При комнатной температуре алюминий не изменяется на воздухе, но лишь потому, что его поверхность покрыта тонкой пленкой оксида, обладающего очень сильным защитным действием.

Рис. 1. Алюминий. Внешний вид.

Алюминий характеризуется большой тягучестью и высокой электропроводностью, составляющей приблизительно 0,6 электропроводности меди. С этим связано его использование в производстве электрических проводов (которые при сечении, обеспечивающем равную электропроводность, вдвое легче медных). Важнейшие константы алюминия представлены в таблице ниже:

Таблица 1. Физические свойства и плотность алюминия.

Титан и титановые сплавы

Титан и сплавы из него маркируются согласно существующим ГОСТ буквами и цифрами. Закономерностей при маркировке не существует. Однако ключевая особенность в этом случае — это обязательное присутствие буквы «Т». Числа обозначают условный номер титанового сплава.

Технический титан может маркироваться как ВТ1−0 или ВТ1−00. Все остальное означает титановые сплавы и имеет другие маркировки, которые обозначаются по-разному, и все их перечислить не удастся.

Ключевое преимущество титана и материалов на его основе — это отличное сочетание таких свойств, как:

  • относительно низкая плотность;
  • очень высокая устойчивость к коррозии;
  • высокая механическая прочность.

Но есть у них и недостатки — это дефицитность и дороговизна. По этой причине применение этого материала в холодильной и пищевой промышленности ограничено. Титановые сплавы преимущество применяются в таких отраслях:

  • судостроение;
  • ракетостроение;
  • авиационное строительство;
  • химическое машиностроение;
  • транспортное машиностроение.

Материалы могут применяться при высоких температурах до 500 градусов. Изделия на основе титановых материалов производятся методом обработки под давлением, а также посредством литья. По составу литейные сплавы соответствуют деформируемым, но при маркировке в конце указываются буквой «Л».

Добыча руд цветных металлов

Наша страна обладает практически неограниченными запасами полезных ископаемых и является своего рода сырьевой базой промышленности цветных металлов. Руды цветных металлов делятся на два типа: геогенные и техногенные.

Геогенный – это месторождение минеральных ресурсов на поверхности земли или в глубине, которое может быть использовано в промышленности по количеству, качеству, условиям возникновения и технологичности. Геогенные отложения состоят из одного или нескольких месторождений. Основные же значительные запасы относят к техногенным месторождениям.

Область промышленного применения и переработка цветных металлов используется для распределения минеральных ресурсов в:

  • топливно-энергетические ресурсы (нефть, природный газ, ископаемый уголь, горючие сланцы, торф, уран, руда);
  • рудные ресурсы, которые являются сырьевой базой железа, стали и цветных металлов в промышленности (железо и марганцевая руда, хромит, боксит, полиметаллическая руда, медно-никелевый сплав, вольфрам, молибден, олово, руды драгоценных металлов и т. д.);
  • горно-химическое сырье (фосфорит, апатит, калий и магнезия, соли, серы и соединения, барит, борная руда, бромистый раствор);
  • натуральные строительные материалы и неметаллические камни (мрамор, гранит, яшма, агат, камень, кристалл, гранат, корунд, алмаз и т. п.);
  • гидроминеральные ресурсы (подземная сладкая и минерализованная вода).

Рудный слой формируется в процессе эволюции земной коры. Вещества, необходимые для образования минеральных ресурсов, поступают из верхней мантии коры и с поверхности в магматических расплавах, жидких и газообразных растворах. В связи с этим руды цветных металлов наделены щелочными свойствами и часто представлены в виде отложений слюды, полевого шпата, драгоценных камней. Кроме этого, существуют руды горного хрусталя, графита, кварца, флюорита, асбеста и других пород.

Рудные породы накапливаются в прибрежных отложениях морей и океанов, в качестве осадочных пород с образованием слоистых слоев на дне болот, в речных или озерных отложениях и на склонах долин. Яркими представителями рудных месторождений цветных металлов являются железные руды бассейна Кривого Рога и Курская магнитная аномалия, золото и урановые руды Южной Африки.

Особенности

Не только металлы являются основой предприятий черной металлургии. Предприятия по добыче и переработке сопутствующих материалов, кокса, огнеупоров также входят в состав отрасли черной металлургии.

Можно выделить такие особенности черной металлургии, которые присущи именно ей, в отличие от производства цветных металлов:

  • Более одной трети выпускаемой продукции (сталь и сплавы на основе железа, чугун) является основой всего машиностроения;
  • Более четверти продукции используется в строительстве для создания элементов нагруженных и несущих конструкций.

Спецификой предприятий металлургического комплекса черной металлургии является то, что они, по большей части, составляют основу индустрии государства, являясь, вместе с тем, одними из самых высоких капитало- и материалоемкими.

Организация выработки металла на предприятиях черной металлургии отличается сильной региональной зависимостью. Для переработки руды и производства первичного металла (чугуна) требуются большое количество кокса, рудного сырья и электроэнергии. Подсчитано, что сырье и топливо составляют более 90% общих затрат на производство черного металла. Необходимость в транспортировке огромных масс рудного и топливного сырья диктует необходимость решать задачи рационального размещения предприятия. Наиболее часто предприятия черной металлургии концентрируются таким образом:

  • Возле рудных месторождений. Требуется доставка топлива;
  • Вблизи источников топлива (предприятия угледобычи). Остается вопрос поставки рудного сырья;
  • На оптимальном расстоянии между источниками сырья и топлива.

Большинство комбинатов по производству черного металла сосредоточены вблизи залежей железных руд. Можно объяснить это тем, что изначально, в годы массового строительства металлургических предприятий, восстановление железа из обогащенного сырья производилось посредством древесного угля, добываемого непосредственно вблизи месторождений. При переходе на использование кокса стало выгоднее организовать его доставку, чем переносить металлургическое производство.

Предприятия вторичной переработки металлического лома черных металлов (передельная металлургия) сосредоточены вблизи крупных центров машиностроения.СырьеСырьевая база является основой металлургического производства. В зависимости от типа металлургического предприятия, источники сырья могут быть разные. В частности, черная металлургия может делиться на такие отрасли:

  • Предприятия полного цикла. Большинство стадий производственного цикла, обогащение руд, производство кокса, выплавка и прокат металла сосредоточены на одном объекте.
  • Передельныеметаллургические предприятия. Одна из стадий, а это, в основном, производство сталей и сплавов, выделена в отдельную отрасль.
  • Малая черная металлургия. Характеризуется тем, что цеха по производству металла входят в состав машиностроительных предприятий.

Сырьем черной металлургии для передельных и малых предприятий служит полуфабрикат для выработки стали – чугун, металлолом и прочие отходы основного металлургического производства. В данную группу производств входит изготовление ферросплавов, в состав которых входят различные легирующие добавки.

Добыча руды черных металлов

Добыча руды, ее обогащение, выплавка характеризуют предприятия полного цикла. Для черной металлургии характерно использование сырья с высоким процентным содержанием металла при больших объемах переработки. Добыча и обогащение руды требуют серьезных затрат электрической энергии и требовательны к наличию доступных водных ресурсов.

История открытия

Цветные металлы и их сплавы появлялись постепенно. После каменного века настала пора меди. Этот материал использовали для разных целей: изготавливали посуду, делали наконечники к орудиям труда, оружию. Век меди сменился эпохой бронзы. Это был первый сплав — соединение меди и свинца. Постепенно бронзу заменило железо.

С развитием металлургии, осваиванием новых земель, развитием торговли начали появляться драгоценные металлы. Изначально более популярным было серебро, а не золото. Из-за того что, средние века были эпохой войн, сражений, рыцарства, кузнецы искали новые материалы для изготовления доспехов, оружия. Так появлялись новые смеси.

Цинк и его сплавы

Сплав цинка с медью — латунь. Цинк — металл светло-сероголубоватого цвета, хрупкий при комнатной температуре и при 200°С, при нагревании до 100–150°С становится пластичным. В промышленности широко применяются цинковые сплавы: латуни, цинковые бронзы, сплавы для покрытия стальных изделий, изготовления гальванических элементов, типографские и др.

Цинковые сплавы используются в автомобиле- и приборостроении и других отраслях промышленности. Марки этих сплавов:

  • ЦАМ4-10 — особо ответственные детали;
  • ЦАМ4-1 — ответственные детали;
  • ЦАМ4-1в — неответственные детали;
  • ЦА4о — ответственные детали с устойчивыми размерами;
  • ЦА4 — неответственные детали с устойчивыми размерами.

Цинковые антифрикционные сплавы, предназначенные для производства монометаллических и биметаллических изделий. Марки этих сплавов:

  • ЦАМ9-1,5Л — отливка монометаллических вкладышей, втулок и ползунов; допустимые нагрузка — 10 МПа (100 кгс/см2), скорость скольжения — 8 м/с, температура 80 оС; если биметаллические детали получают методом литья при наличии металлического каркаса, то нагрузка, скорость скольжения и температура могут быть увеличены до 20 МПа (200 кгс/см2), 10 м/с и 100о С соответственно;
  • ЦАМ9-1,5 — получение биметаллической ленты (сплав цинка со сталью и дюралюминием) методом прокатки, лента предназначена для изготовления вкладышей путем штамповки; допустимые нагрузка — до МПа (250 кгс/см2), скорость скольжения — до 15 м/с, температура 100о С;
  • ЦАМ10-5Л — отливка подшипников и втулок; допустимыя нагрузка – 10 МПа (100 кгс/см2), скорость скольжения — 8 м/с, температура 80о С;
  • ЦАМ10-5 – прокатка полос для направляющих скольжения металлорежущих станков и других изделий; рабочие нагрузка до 20 МПа (200 кгс/см2), скорость скольжения — до 8 м/с, температура 80о С.

Производство отдельных видов

Производство меди

Получение подобного цветного металла происходит из медных руд. Его содержание в составе этих соединении составляет от 1 до 6%. При составе меди менее 1% ее извлечение при современном уровне развития технологии не представляется рентабельным.

Получение меди осуществляется двумя способами:

  • гидрометаллургический;
  • пирометаллургический.

Пирометаллургический метод добычи меди состоит из нескольких последовательных этапов:

  • Подготовка руды к плавке посредством обогащения и дальнейшего обжига. Это позволяет получить концентрат меди.
  • Последующий обжиг требуется для сокращения количества серы.
  • Плавка на штейн. Путем плавки концентратов меди удается получить штейн или сульфиды меди и железа.

А также проводится конвертирование штейна. Этот этап заключается путем продувки воздухом внутри специального медеплавильного конвертера полученного штейна, что позволяет выделить железо в шлак и получить черновую медь.

И в заключение – рафинирование. Черновая медь подвергается действию огневого плавления и электролитического рафинирования, что позволяет в итоге получить продукт, чистота которого составляет 99,97–99,99%.

Производство алюминия

Получение алюминия происходит методом электролиза глинозема. Процесс включает несколько этапов.

Получение чистого глинозема или оксида алюминия. Этот процесс заключается в обработке бокситов (руд, содержащих металл) щелочными растворами. Результатом является выпадение в виде осадка гидроксида алюминия.

Получение криолита – его производство заключается в обработке плавикового шпата для получения плавиковой кислоты и дальнейшего выделения фторалюминиевой кислоты. Посредством соды криолит выделяется в виде осадка.

Электролиз глинозема – результатом этого процесса является получения алюминия-сырца.

Рафинирование – посредством продувки расплавленного сырца хлором добывается чистый алюминий.

Производство магния

Магний добывается посредством реакции электролиза. Сырьем служат расплавленные соли металла (карналлит, магнезит, доломит, бишофит). Основу электролита составляет хлористый магний. Дополнительно применяется хлористый натрий, кальций и калий.

После проведения реакции на аноде оседает черновой металл, имеющий до 5% примесей. Их удаление происходит посредство процесса рафинирования с использованием флюсов. Все неметаллические компоненты преобразуются в шлак, а чистый металл разливается в изложницы.

Производство титана

По своим качествам титан и его сплавы во многом превосходят легированные стали. Процесс производства титана затрудняется его повышенной активностью, особенно при повышении температуры.

Его особенностью является способность вступать в реакцию со множеством металлов, что требует соблюдения определенных условий для получения чистого титана.

Метод, применяемый для получения титана, называется магниетермия. Он состоит из следующих операций.

Выделение титанового концентрата путем обогащения руды, содержащей подобный металл.

Изготовление шлака – на этом этапе происходит отделение оксидов железа от оксидов титана.

Получение четыреххлористого титана – чтобы получить металлический титан, требуется применение хлорида титана, получаемый при хлорировании шлака.

Восстановление посредством магния – процесс восстановления протекает при очень высоких температурах – близких к 1 тыс. градусов. Реактор, где расплавляется магний, подается парообразный титан. При металлизации он оседает на стенках, а расплавленный магний удаляется через летку.

Сепарация массы в вакууме – полученный в результате предыдущего шага титан в виде губчатой массы требуется нагреть с использованием вакуума, что позволит выделить чистый металл.

Особенности сырья

Все цветные металлы обладают рядом особенностей, что должно учитываться при обработке или их использовании.

Ряд элементов имеют повышенную теплопроводность и удельную теплоемкость:

  • медь;
  • магний;
  • алюминий.

При сварке место соединения быстро охлаждается, что потребует использования мощных источников, особенно тепла при сварочных работах.

Некоторые элементы при резком нагреве изменяют свои механические свойства. Наблюдается их снижение. При этом сам металл становится легко разрушаемым от ударов или иного механического воздействия.

Все цветные металлы легко вступают во взаимодействие с газами, кроме инертных. Эта особенность характерна для тугоплавких цветных металлов.

Литейные алюминиевые сплавы

Литейные сплавы содержат почти те же легирующие компоненты, что и деформируемые сплавы, но в значительно большем количестве (до 9—13% по отдельным компонентам). Литейные сплавы предназначены для изготовления фасонных отливок.

Алюминиевые литейные сплавы маркируют буквами АЛ и цифрой, указывающей условный номер сплава.

Выпускают 35 марок литейных алюминиевых сплавов, которые по химическому составу можно разделить на несколько групп, например алюминий с кремнием (АЛ2, АЛ4, АЛ9) или алюминий с магнием (АЛ8, АЛ13, АЛ22 и др.).

Сплавы на основе алюминия кремния называют силуминами. Силумин обладает высокими механическими и литейным свойствами: высокой жидкотекучестью, небольшой усадкой, достаточно высокой прочностью, удовлетворительной пластичностью. Сплавы на основе алюминия и магния имеют высокую удельную прочность, хорошо обрабатываются резанием и имеют высокую коррозионную стойкость.

Свойства алюминиевых литейных сплавов существенно зависят от способа литья и вида термической обработки

Важное значение при литье имеют скорость охлаждения затвердевающей отливки или скорость охлаждения при ее закалке. В общем случае увеличение скорости отвода тепла вызывает повышение прочностных свойств

Поэтому механические свойства отливок при литье в кокиль (металлические литейные формы) выше, чем при литье в песчано-глинистые формы (табл. 8).

В графе «Способы литья» введены следующие обозначения: З — в песчано-глинистые формы, В — по выплавленным моделям, К — кокиль, Д — под давлением. Буква М, следующая за первой буквой, обозначает, что сплав при литье подвергают модифицированию.

Литейные алюминиевые сплавы имеют более грубую и крупнозернистую структуру, чем деформируемые. Это определяет режимы их термической обработки. Для закалки силумины нагревают до температуры 520–540°С и дают длительную выдержку (5…10 ч), чтобы полнее растворить включения. Искусственное старение проводят при 150…180°С в течение 10…20 ч. Для улучшения механических свойств силумины, содержащие более 5% кремния, модифицируют натрием. Для этого в расплав добавляют 1…3% от массы сплава соли натрия (2/3NaF + 1/3NaCl). При этом снижается температура кристаллизации сплава и измельчается его структура.

Магний и сплавы: маркировка и описание

Технический магний обладает не самыми лучшими свойствами, поэтому его не используют как конструкционный материал. А вот магниевые сплавы в соответствии со стандартами подразделяются на литейные и деформируемые.

В соответствии с ГОСТ литейные маркируются как «МЛ», а также цифрой, обозначающей их условный номер. В некоторых моделях после цифр идут такие строчные буквенные обозначения:

  • «пч» — повышенной чистоты;
  • «он» — материал общего назначения.

А деформируемые магниевые сплавы маркируются буквами «МА», а также цифрой, соответствующей условному номеру материала. После числа тоже может идти обозначение «пч».

Магниевые материалы имеют отличное сочетание таких свойств, как:

  • низкая плотность;
  • высокая устойчивость к коррозии;
  • относительно высокая прочность;
  • хорошие технологические качества.

На основе магниевых сплавов производят детали простой и сложной формы, обладающие высокой устойчивостью к коррозии. Например:

  • арматуру;
  • горловины;
  • насосные корпусы;
  • бензиновые баки;
  • барабаны тормозных колес;
  • штурвалы;
  • фермы и т. д.

Родий и платина

Родий – металл, не имеющий собственных минералов, поэтому является одним из самых дорогостоящих. За грамм придется отдать более 220 долларов. Данный благородный металл имеет серебристый цвет с голубоватым отливом. Отличается своей устойчивостью к химическим и температурным воздействиям, но крайне уязвим к механическим повреждениям ввиду своей хрупкости. Так как стоит достаточно дорого, то используется лишь там, где нельзя подобрать аналог.

Если рассматривать типы и виды металлов, то нельзя не сказать о платине, открытой в 1952 году шведским химиком. Это достаточно редкий материал и в природе встречается только в сочетании сплавов с другими металлами. Процесс добычи крайне трудоемкий и требует больших вложений, но оно того стоит, ведь на платину не действует ни одна известная на сегодняшний день кислота. При нагревании не изменяет свой цвет и не окисляется.

Как настроить и отрегулировать датчик движения для автоматизации включения света

Требования к антифрикционным сплавам

Антифрикционные сплавы предназначены для повышения долговечности трущихся поверхностей машин и механизмов. Трение происходит в подшипниках скольжения между валом и вкладышем подшипника. Для вкладыша подшипника подбирают такой материал, который предохраняет вал от износа, сам минимально изнашивается, создает условия для оптимальной смазки и уменьшает коэффициент трения. Антифрикционный материал представляет собой сочетание достаточно прочной и пластичной основы, с опорными (твердыми) включениями. При трении пластичная основа частично изнашивается, а вал опирается на твердые включения. Трение происходит не по всей поверхности подшипника, смазка удерживается в изнашивающихся местах пластичной основы.

Антифрикционные сплавы создают на основе олова, свинца, меди или алюминия; они обладают специальными антифрикционными свойствами (табл. 14).

К ним относятся:

  1. баббит марок Б88 и БС6, применяемый для изготовления подшипников быстроходных дизелей и подшипников автотракторных двигателей;
  2. бронза БрОЦС5-5-5, используемая для изготовления подшипников электродвигателей центробежных насосов;
  3. латунь марки ЛМцЖ52-4-1, используемая для изготовления подшипников рольгангов, контейнеров, редукторов, и другие сплавы.

Антифрикционные свойства сплавов проявляются при трении в подшипниках скольжения. К ним относятся:

  1. низкий коэффициент трения;
  2. хорошая прирабатываемость к сопрягаемой детали;
  3. высокая теплопроводность;
  4. способность удерживать смазку и др.

Из антифрикционных сплавов наиболее широко применяют баббит, бронзу, алюминиевые сплавы, чугун и металлокерамические материалы. Антифрикционные сплавы хорошо прирабатываются в парах трения благодаря мягкой основе — олову, свинцу или алюминию. Более твердые металлы (цинк, медь, сурьма), вкрапленные в мягкую основу, способны выдерживать большие нагрузки. После приработки и частичной деформации мягкой основы в ней образуются углубления, способные удерживать смазку, необходимую для нормальной работы пары.

Таблица 14

АНТИФРИКЦИОННЫЕ СПЛАВЫ

Материал Марка Условие применение Назначение
Давление, МПа Окружная скорость, м/с
Баббит Б88 20 50 Подшипники быстроходных дизелей

Подшипники автотракторных двигателей

БС6 15
Бронза БрОЦС5-5-5 8 3 Подшипники электродвигателей центробежных насосов
Латунь ЛМцЖ52-4-1 4 2 Подшипники рольгангов, конвейеров, редукторов
Чугун АЧС-1 25 5 Для работы с закаленным или нормализированным, с термически необработанным валом (в стадии подготовки)
АЧС-5 20 1,2
АЧВ-1 20 1,0
АЧК-1 20 2,0
АЧС-3 6 0,7
АЧК-2 12 1,0
Металлокерамика Бронзо- 12…18 0,1 Подшипники конвейеров сельскохозяйственных и других машин; подшипники, работающие в

местах, труднодоступных для подачи

смазки

графит 0,8…1,2 4,0
Железографит 15

0,6…1,0

0,1

4,0

Виды черного лома

С ростом популярности металлолома, появилась нужда в его классификации. Металлолом делят на подгруппы, в зависимости от вида металла, преобладающего в его составе:

Железный лом (габаритный лом, негабаритный лом, стружка, мелкие отходы, изношенные изделия и т. д.)

Чугунный лом (стружка, литье и др.)

Лом «нержавейки» (отходы металлообработки, емкости, стружка и т. д.)

Про нержавейку стоит сказать отдельно, т.к. этот металл можно отнести и к черному лому и к цветному, в данном случае все зависит от марки конкретного образца, называемым “нержавейка”.

Также существуют марки лома черных металлов, в зависимости от их химического состава:

Углеродистый (стальной). Стали без примесей

Легированный. Стали имеющие примеси (легированные)

Оцените статью
Рейтинг автора
5
Материал подготовил
Андрей Измаилов
Наш эксперт
Написано статей
116
Добавить комментарий