Математический маятник

2.2. Свободные колебания. Пружинный маятник window.top.document.title = «2.2. Свободные колебания. Пружинный маятник»;

Свободные колебания совершаются под действием внутренних сил системы после того, как система была выведена из положения равновесия.

Для того, чтобы свободные колебания совершались по гармоническому закону, необходимо, чтобы сила, стремящаяся возвратить тело в положение равновесия, была пропорциональна смещению тела из положения равновесия и направлена в сторону, противоположную смещению (см. §2.1):

В этом соотношении ω – круговая частота гармонических колебаний. Таким свойством обладает упругая сила в пределах применимости закона Гука:

Силы любой другой физической природы, удовлетворяющие этому условию, называются квазиупругими.

Таким образом, груз некоторой массы m, прикрепленный к пружине жесткости k, второй конец которой закреплен неподвижно (рис. 2.2.1), составляют систему, способную в отсутствие трения совершать свободные гармонические колебания. Груз на пружине называют линейным гармоническим осциллятором.

Рисунок 2.2.1.Колебания груза на пружине. Трения нет

Круговая частота ω свободных колебаний груза на пружине находится из второго закона Ньютона:

Частота ω называется собственной частотой колебательной системы.

Период T гармонических колебаний груза на пружине равен

При горизонтальном расположении системы пружина–груз сила тяжести, приложенная к грузу, компенсируется силой реакции опоры. Если же груз подвешен на пружине, то сила тяжести направлена по линии движения груза. В положении равновесия пружина растянута на величину x, равную

ωT

Строгое описание поведения колебательной системы может быть дано, если принять во внимание математическую связь между ускорением тела a и координатой x: ускорение является второй производной координаты тела x по времени t:

Поэтому второй закон Ньютона для груза на пружине может быть записан в виде

Все физические системы (не только механические), описываемые уравнением (*), способны совершать свободные гармонические колебания, так как решением этого уравнения являются гармонические функции вида

Уравнение (*) называется уравнением свободных колебаний

Следует обратить внимание на то, что физические свойства колебательной системы определяют только собственную частоту колебаний ω или период T. Такие параметры колебательного процесса, как амплитуда xm и начальная фаза φ, определяются способом, с помощью которого система была выведена из состояния равновесия в начальный момент времени

Если, например, груз был смещен из положения равновесия на расстояние Δl и затем в момент времени t = 0 отпущен без начальной скорости, то xm = Δl, φ = 0.

Если же грузу, находившемуся в положении равновесия, с помощью резкого толчка была сообщена начальная скорость
то ,

Таким образом, амплитуда xm свободных колебаний и его начальная фаза φ определяются начальными условиями.

Модель.
Колебания груза на пружине

Существует много разновидностей механических колебательных систем, в которых используются силы упругих деформаций. На рис. 2.2.2 показан угловой аналог линейного гармонического осциллятора, совершающий крутильные колебания. Горизонтально расположенный диск висит на упругой нити, закрепленной в его центре масс. При повороте диска на угол θ возникает момент сил Mупр упругой деформации кручения:

Это соотношение выражает закон Гука для деформации кручения. Величина χ аналогична жесткости пружины k. Второй закон Ньютона для вращательного движения диска записывается в виде (см. §1.23)

I = ICε

По аналогии с грузом на пружине можно получить:

Крутильный маятник широко используется в механических часах. Его называют балансиром. В балансире момент упругих сил создается с помощью спиралевидной пружинки.

Рисунок 2.2.2.Крутильный маятник

Что такое циклическая частота

Колебательное движение и движение по окружности имеют много общего – это повторяющиеся движения. Одному полному обороту соответствует угол \(\large 2\pi\) радиан. Поэтому, кроме интервала времени 1 секунда, физики используют интервал времени, равный \(\large 2\pi\) секунд.

Число полных колебаний для такого интервала времени, называется циклической частотой и обозначается греческой буквой «омега»:

\( \large \displaystyle \omega \left( \frac{\text{рад}}{c} \right) \)

Примечание: Величину \( \large \omega \) так же называют круговой частотой, а еще — угловой скоростью (ссылка).

Обычная \( \large \nu \) и циклическая \( \large \omega \) частота колебаний связаны формулой:

\

Слева в формуле количество колебаний измеряется в радианах на секунду, а справа – в Герцах.

Чтобы с помощью графика колебаний определить величину \( \large \omega \), нужно сначала найти период T.

Затем, воспользоваться формулой \( \large \displaystyle \nu = \frac{1}{T} \) и вычислить частоту \( \large \nu \).

И только после этого, с помощью формулы \( \large \omega = 2\pi \cdot \nu \) посчитать циклическую \( \large \omega \) частоту.

Определить величину \( \large \omega \) по графику колебаний можно еще одним способом. На оси времени отметить интервал, равный \(\large 2\pi\), а затем, сосчитать количество периодов колебаний в этом интервале (рис. 6).

Рис. 6. На графике циклическая (круговая) частота – это количество периодов, уместившихся в 2 пи секунд

Характер движения маятника

Математический маятник со стержнем способен колебаться только в какой-то одной плоскости (вдоль какого-то выделенного горизонтального направления) и, следовательно, является системой с одной степенью свободы. Если же стержень заменить на нерастяжимую нить, получится система с двумя степенями свободы (так как становятся возможными колебания по двум горизонтальным координатам).

При колебаниях в одной плоскости маятник движется по дуге окружности радиуса L{\displaystyle L}, а при наличии двух степеней свободы может описывать кривые на сфере того же радиуса. Нередко, в том числе в случае нити, ограничиваются анализом плоского движения; оно и рассматривается далее.

Решения уравнения движения

Гармонические колебания

Малые колебания маятника являются гармоническими. Это означает, что смещение маятника от положения равновесия изменяется во времени по синусоидальному закону. Поскольку уравнение движения является обыкновенным ДУ второго порядка, для определения закона движения маятника необходимо задать два начальных условия — координату и скорость, из которых определяются две независимые константы:

x=Asin⁡(θ+ωt),{\displaystyle x=A\sin(\theta _{0}+\omega t),}

где A{\displaystyle A} — амплитуда колебаний маятника, θ{\displaystyle \theta _{0}} — начальная фаза колебаний, ω{\displaystyle \omega } — циклическая частота, которая определяется из уравнения движения. Движение, совершаемое маятником, называется гармоническими колебаниями.

Нелинейный маятник

Для маятника, совершающего колебания с большой амплитудой, закон движения более сложен:

sin⁡x2=ϰ⋅sn⁡(ωt;ϰ),{\displaystyle \sin {\frac {x}{2}}=\varkappa \cdot \operatorname {sn} (\omega t;\varkappa ),}

где sn{\displaystyle \operatorname {sn} } — это синус Якоби. Для ϰ<1{\displaystyle \varkappa <1} он является периодической функцией, при малых ϰ{\displaystyle \varkappa } совпадает с обычным тригонометрическим синусом.

Параметр ϰ{\displaystyle \varkappa } определяется выражением

ϰ=ε+ω22ω2,{\displaystyle \varkappa ={\frac {\varepsilon +\omega ^{2}}{2\omega ^{2}}},}

где ε=EmL2{\displaystyle \varepsilon ={\frac {E}{mL^{2}}}} — энергия маятника в единицах t−2.

Период колебаний нелинейного маятника составляет

T=2πΩ,Ω=π2ωK(ϰ),{\displaystyle T={\frac {2\pi }{\Omega }},\quad \Omega ={\frac {\pi }{2}}{\frac {\omega }{K(\varkappa )}},}

где K — эллиптический интеграл первого рода.

Для вычислений практически удобно разлагать эллиптический интеграл в ряд:

T=T{1+(12)2sin2⁡(α2)+(1⋅32⋅4)2sin4⁡(α2)+⋯+(2n−1)!!(2n)!!2sin2n⁡(α2)+…}{\displaystyle T=T_{0}\left\{1+\left({\frac {1}{2}}\right)^{2}\sin ^{2}\left({\frac {\alpha }{2}}\right)+\left({\frac {1\cdot 3}{2\cdot 4}}\right)^{2}\sin ^{4}\left({\frac {\alpha }{2}}\right)+\dots +\left^{2}\sin ^{2n}\left({\frac {\alpha }{2}}\right)+\dots \right\}},

где T=2πLg{\displaystyle T_{0}=2\pi {\sqrt {\frac {L}{g}}}} — период малых колебаний, α{\displaystyle \alpha } — максимальный угол отклонения маятника от вертикали.

При углах до 1 радиана (≈60°) с приемлемой точностью (ошибка менее 1 %) можно ограничиться первым приближением:

T=T(1+14sin2⁡(α2)).{\displaystyle T=T_{0}\left(1+{\frac {1}{4}}\sin ^{2}\left({\frac {\alpha }{2}}\right)\right).}

Точная формула периода, с квадратичной сходимостью для любого угла максимального отклонения, обсуждается на страницах сентябрьского выпуска журнала «Заметки американского математического общества» 2012 года:

T=2πM(cos⁡(θ2))Lg,{\displaystyle T={\frac {2\pi }{M{\big (}\cos(\theta _{0}/2){\big )}}}{\sqrt {\frac {L}{g}}},}

где M(x){\displaystyle M(x)} — арифметико-геометрическое среднее чисел 1 и x{\displaystyle x}.

Движение по сепаратрисе

Движение маятника по сепаратрисе является непериодическим. В бесконечно далёкий момент времени он начинает падать из крайнего верхнего положения в какую-то сторону с нулевой скоростью, постепенно набирает её, а затем останавливается, возвратившись в исходное положение.

Рубрики

ПРИМЕРЫ ЗАДАНИЙ

Часть 1

1. Какой путь пройдёт груз математического маятника за 10 полных колебаний, если амплитуда колебаний равна 3 см?

1) 30 см
2) 60 см
3) 90 см
4) 120 см

2. Маятник совершает 20 полных колебаний за 10 с. Чему равна частота колебаний маятника?

1) 20 Гц
2) 2 Гц
3) 1 Гц
4) 0,5 Гц

3. Во сколько раз надо изменить массу груза пружинного маятника, чтобы период колебаний увеличился в 9 раз?

1) увеличить в 3 раза
2) уменьшить в 9 раз
3) уменьшить в 81 раз
4) увеличить в 81 раз

4. Массу груза математического маятника, совершающего гармонические колебания, увеличили в 9 раз. При этом период колебаний

1) увеличился в 3 раза
2) увеличился в 9 раз
3) уменьшился в 3 раза
4) не изменился

5. Если перенести математический маятник с Земли на Марс, то

1) частота колебаний не изменится
2) частота колебаний увеличится
3) частота колебаний уменьшится
4) маятник не будет колебаться

6. На рисунке представлен график колебаний математического маятника. Период колебаний маятника равен

1) 1 с
2) 2 с
3) 3 с
4) 4 с

7. Период колебаний частиц в волне можно вычислить по формуле

1) ​\( T=\frac{\nu}{\lambda} \)​
2) ​\( T=\frac{\lambda}{\nu} \)​
3) ​\( T=\lambda\nu \)​
4) ​\( T=v\nu \)​

8. На рисунке показан график волны, бегущей вдоль упругого шнура, в некоторый момент времени. Длина волны равна расстоянию

1) ВС
2) BD
3) BE
4) OD

9. Сравните громкость звука и высоту тона двух звуковых колебаний, если для первого колебания: амплитуда ​\( A_1 \)​ = 2 мм, частота ​\( \nu_1 \)​ = 500 Гц, для второго колебания: \( A_2 \) = 4 мм, частота \( \nu_w \) = 300 Гц.

1) громкость первого звука больше, чем второго, а высота тона меньше
2) и громкость, и высота тона первого звука больше, чем второго
3) и громкость и высота тона первого звука, меньше, чем второго
4) громкость первого звука меньше, чем второго, а высота тона больше

10. Волна частотой 3 Гц распространяется в среде со скоростью 6 м/с. Длина волны равна

1) 18 м
2) 2 м
3) 1 м
4) 0,5 м

11. Математический маятник отвели в сторону и отпустили. Как будут изменяться значения величин, характеризующих колебания маятника при его движении к положению равновесия. Для каждой величины из первого столбца подберите соответствующее характеру её изменения слово из второго столбца. Запишите в таблицу выбранные цифры под соответствующими буквами. Цифры могут повторяться.

ВЕЛИЧИНЫ
A) смещение
Б) скорость
B) потенциальная энергия

ХАРАКТЕР ИЗМЕНЕНИЯ
1) увеличивается
2) уменьшается
3) не изменяется

12. Среди приведённых ниже положений укажите два правильных и запишите их номера в таблице.

1) Звук распространяется только в воздухе.
2) Колебания, частота которых больше 20 000 Гц, называются ультразвуком.
3) Инфразвук — колебания, частота которых больше 16 Гц.
4) Эхо — явление многократного отражения звуковых волн от преград.
5) Звуковые волны — поперечные.

Характер движения маятника

Математический маятник со стержнем способен колебаться только в какой-то одной плоскости (вдоль какого-то выделенного горизонтального направления) и, следовательно, является системой с одной степенью свободы. Если же стержень заменить на нерастяжимую нить, получится система с двумя степенями свободы (так как становятся возможными колебания по двум горизонтальным координатам).

При колебаниях в одной плоскости маятник движется по дуге окружности радиуса L{\displaystyle L}, а при наличии двух степеней свободы может описывать кривые на сфере того же радиуса. Нередко, в том числе в случае нити, ограничиваются анализом плоского движения; оно и рассматривается далее.

Характер движения маятника

Математический маятник со стержнем способен колебаться только в какой-то одной плоскости (вдоль какого-то выделенного горизонтального направления) и, следовательно, является системой с одной степенью свободы. Если же стержень заменить на нерастяжимую нить, получится система с двумя степенями свободы (так как становятся возможными колебания по двум горизонтальным координатам).

При колебаниях в одной плоскости маятник движется по дуге окружности радиуса L{\displaystyle L}, а при наличии двух степеней свободы может описывать кривые на сфере того же радиуса. Нередко, в том числе в случае нити, ограничиваются анализом плоского движения; оно и рассматривается далее.

Виды кровельных материалов

Что такое частота

Обозначают ее с помощью греческой буквы «ню» \( \large \nu \).

Поэтому, размерность частоты — это единицы колебаний в секунду:

\( \large \nu \left( \frac{1}{c} \right) \).

Иногда в учебниках встречается такая запись \( \large \displaystyle \nu \left( c^{-1} \right) \), потому, что по свойствам степени \( \large  \displaystyle \frac{1}{c} = c^{-1} \).

Начиная с 1933 года частоту указывают в Герцах в честь Генриха Рудольфа Герца. Он совершил значимые открытия в физике, изучал колебания и доказал, что существуют электромагнитные волны.

Одно колебание в секунду соответствует частоте в 1 Герц.

\

Чтобы с помощью графика определить частоту, нужно на оси времени определить период. А затем посчитать частоту по такой формуле:

\

Существует еще один способ определить частоту с помощью графика колеблющейся величины. Нужно отмерить на графике интервал времени, равный одной секунде, и сосчитать количество периодов колебаний, уместившихся в этот интервал (рис. 5).

Рис. 5. На графике частота – это количество периодов, уместившихся в одну секунду

Практическое применение математического маятника

Вот мы добрались и до самого интересного, зачем нужен математический маятник и какое его применение на практике в жизни. В первую очередь ускорение математического маятника используется для геологоразведки, с его помощью ищут полезные ископаемые. Как это происходит? Дело в том, что ускорение свободного падения изменяется с географической широтой, так как плотность коры в разных местах нашей планеты далеко не одинакова и там где залегают породы с большей плотностью, ускорение будет немножко больше. А значит, просто подсчитав количество колебаний маятника можно отыскать в недрах Земли руду или каменный уголь, так как они имеют большую плотность, нежели другие рыхлые горные породы.

Также математическим маятником пользовались многие выдающиеся ученые прошлого, начиная с античности, в частности Архимед, Аристотель, Платон, Плутарх. Так Архимед и вовсе использовал математический маятник во всех своих вычислениях, а некоторые люди даже верили, что маятник может влиять на судьбы людей и пытались делать с его помощью предсказания будущего.

2.3. Свободные колебания. Математический маятник window.top.document.title = «2.3. Свободные колебания. Математический маятник»;

Математическим маятником называют тело небольших размеров, подвешенное на тонкой нерастяжимой нити, масса которой пренебрежимо мала по сравнению с массой тела. В положении равновесия, когда маятник висит по отвесу, сила тяжести уравновешивается силой натяжения нити При отклонении маятника из положения равновесия на некоторый угол φ появляется касательная составляющая силы тяжести Fτ = –mg sin φ (рис. 2.3.1). Знак «минус» в этой формуле означает, что касательная составляющая направлена в сторону, противоположную отклонению маятника.

Рисунок 2.3.1.Математический маятник. φ – угловое отклонение маятника от положения равновесия, x = lφ – смещение маятника по дуге

Если обозначить через x линейное смещение маятника от положения равновесия по дуге окружности радиуса l, то его угловое смещение будет равно φ = x / l. Второй закон Ньютона, записанный для проекций векторов ускорения и силы на направление касательной, дает:

Это соотношение показывает, что математический маятник представляет собой сложную нелинейную систему, так как сила, стремящаяся вернуть маятник в положение равновесия, пропорциональна не смещению x, а

Только в случае малых колебаний, когда приближенно можно заменить на математический маятник является гармоническим осциллятором, т. е. системой, способной совершать гармонические колебания. Практически такое приближение справедливо для углов порядка 15–20°; при этом величина отличается от не более чем на 2 %. Колебания маятника при больших амплитудах не являются гармоническими.

Для малых колебаний математического маятника второй закон Ньютона записывается в виде

Таким образом, тангенциальное ускорение aτ маятника пропорционально его смещению x, взятому с обратным знаком. Это как раз то условие, при котором система является гармоническим осциллятором. По общему правилу для всех систем, способных совершать свободные гармонические колебания, модуль коэффициента пропорциональности между ускорением и смещением из положения равновесия равен квадрату круговой частоты:

Эта формула выражает собственную частоту малых колебаний математического маятника.

Следовательно,

Модель.
Математический маятник

Любое тело, насаженное на горизонтальную ось вращения, способно совершать в поле тяготения свободные колебания и, следовательно, также является маятником. Такой маятник принято называть физическим (рис. 2.3.2). Он отличается от математического только распределением масс. В положении устойчивого равновесия центр масс C физического маятника находится ниже оси вращения О на вертикали, проходящей через ось. При отклонении маятника на угол φ возникает момент силы тяжести, стремящийся возвратить маятник в положение равновесия:

Здесь d – расстояние между осью вращения и центром масс C.

Рисунок 2.3.2.Физический маятник

Знак «минус» в этой формуле, как обычно, означает, что момент сил стремится повернуть маятник в направлении, противоположном его отклонению из положения равновесия. Как и в случае математического маятника, возвращающий момент M пропорционален sin φ. Это означает, что только при малых углах φ, когда sin φ ≈ φ, физический маятник способен совершать свободные гармонические колебания. В случае малых колебаний

см. §1.23

εIO

Здесь ω – собственная частота малых колебаний физического маятника.

Следовательно,

Более строгий вывод формул для ω и T можно сделать, если принять во внимание математическую связь между угловым ускорением и угловым смещением: угловое ускорение ε есть вторая производная углового смещения φ по времени:

Поэтому уравнение, выражающее второй закон Ньютона для физического маятника, можно записать в виде

Это уравнение свободных гармонических колебаний (). Коэффициент в этом уравнении имеет смысл квадрата круговой частоты свободных гармонических колебаний физического маятника.

По теореме о параллельном переносе оси вращения (теорема Штейнера) момент инерции I можно выразить через момент инерции IC относительно оси, проходящей через центр масс C маятника и параллельной оси вращения:

Окончательно для круговой частоты ω свободных колебаний физического маятника получается выражение:

Решения уравнения движения

Гармонические колебания

Малые колебания маятника являются гармоническими. Это означает, что смещение маятника от положения равновесия изменяется во времени по синусоидальному закону. Поскольку уравнение движения является обыкновенным ДУ второго порядка, для определения закона движения маятника необходимо задать два начальных условия — координату и скорость, из которых определяются две независимые константы:

x=Asin⁡(θ+ωt),{\displaystyle x=A\sin(\theta _{0}+\omega t),}

где A{\displaystyle A} — амплитуда колебаний маятника, θ{\displaystyle \theta _{0}} — начальная фаза колебаний, ω{\displaystyle \omega } — циклическая частота, которая определяется из уравнения движения. Движение, совершаемое маятником, называется гармоническими колебаниями.

Нелинейный маятник

Для маятника, совершающего колебания с большой амплитудой, закон движения более сложен:

sin⁡x2=ϰ⋅sn⁡(ωt;ϰ),{\displaystyle \sin {\frac {x}{2}}=\varkappa \cdot \operatorname {sn} (\omega t;\varkappa ),}

где sn{\displaystyle \operatorname {sn} } — это синус Якоби. Для ϰ<1{\displaystyle \varkappa <1} он является периодической функцией, при малых ϰ{\displaystyle \varkappa } совпадает с обычным тригонометрическим синусом.

Параметр ϰ{\displaystyle \varkappa } определяется выражением

ϰ=ε+ω22ω2,{\displaystyle \varkappa ={\frac {\varepsilon +\omega ^{2}}{2\omega ^{2}}},}

где ε=EmL2{\displaystyle \varepsilon ={\frac {E}{mL^{2}}}} — энергия маятника в единицах t−2.

Период колебаний нелинейного маятника составляет

T=2πΩ,Ω=π2ωK(ϰ),{\displaystyle T={\frac {2\pi }{\Omega }},\quad \Omega ={\frac {\pi }{2}}{\frac {\omega }{K(\varkappa )}},}

где K — эллиптический интеграл первого рода.

Для вычислений практически удобно разлагать эллиптический интеграл в ряд:

T=T{1+(12)2sin2⁡(α2)+(1⋅32⋅4)2sin4⁡(α2)+⋯+(2n−1)!!(2n)!!2sin2n⁡(α2)+…}{\displaystyle T=T_{0}\left\{1+\left({\frac {1}{2}}\right)^{2}\sin ^{2}\left({\frac {\alpha }{2}}\right)+\left({\frac {1\cdot 3}{2\cdot 4}}\right)^{2}\sin ^{4}\left({\frac {\alpha }{2}}\right)+\dots +\left^{2}\sin ^{2n}\left({\frac {\alpha }{2}}\right)+\dots \right\}},

где T=2πLg{\displaystyle T_{0}=2\pi {\sqrt {\frac {L}{g}}}} — период малых колебаний, α{\displaystyle \alpha } — максимальный угол отклонения маятника от вертикали.

При углах до 1 радиана (≈60°) с приемлемой точностью (ошибка менее 1 %) можно ограничиться первым приближением:

T=T(1+14sin2⁡(α2)).{\displaystyle T=T_{0}\left(1+{\frac {1}{4}}\sin ^{2}\left({\frac {\alpha }{2}}\right)\right).}

Точная формула периода, с квадратичной сходимостью для любого угла максимального отклонения, обсуждается на страницах сентябрьского выпуска журнала «Заметки американского математического общества» 2012 года:

T=2πM(cos⁡(θ2))Lg,{\displaystyle T={\frac {2\pi }{M{\big (}\cos(\theta _{0}/2){\big )}}}{\sqrt {\frac {L}{g}}},}

где M(x){\displaystyle M(x)} — арифметико-геометрическое среднее чисел 1 и x{\displaystyle x}.

Движение по сепаратрисе

Движение маятника по сепаратрисе является непериодическим. В бесконечно далёкий момент времени он начинает падать из крайнего верхнего положения в какую-то сторону с нулевой скоростью, постепенно набирает её, а затем останавливается, возвратившись в исходное положение.

Характеристики рассматриваемой стали

За счет включения в состав определенных примесей ст 09г2с приобретает характеристики следующего типа:

  1. Повышенный механический предел прочности.
  2. Сопротивление воздействию высоких температур.
  3. Возможность проведения термообработки для повышения эксплуатационных качеств. К примеру, закалка существенно повышает твердость поверхности.
  4. Плотность или удельный вес составляет 7,85 грамма на кубический сантиметр материала. Этот момент определяет возможность получения легких изделий.

Кроме этого, сварка может проходить без предварительного подогрева структуры. Поэтому процесс сваривания отдельных деталей, изготавливаемых из рассматриваемого материала, существенно упрощен. Хорошая свариваемость определяется низкой концентрацией углерода.

Востребованность о9г2с связана с тем, что практически ни один аналог не обладает подобными механическими свойствами. Изделия из рассматриваемого металла могут использоваться при температуре от -70 до 450 градусов Цельсия.

Ответы на вопросы по маятнику

Куда пойти учиться?

Выбирать среди большого количества учебных заведений и существующих предметов — занятие весьма непростое. Маятник может помочь и в этом вопросе.

На бумаге надо написать названия тех учебных заведений, о которых хочется узнать, — один лист на каждую тему.

Далее следует расслабиться и четко и ясно задать вопрос: «Является ли … моим лучшим выбором?» — над каждым листком бумаги, повторяя название интересующею учебного заведения.

Надо дождаться четкого ответа маятника и записать все ответы; Ответ будет положительным, если маятник вращается по часовой стрелке, и отрицательным, если против часовой стрелки. Остается лишь сравнить результаты.

Будет ли положительной смена работы?

Безусловно, не хочется ошибиться при выборе места работы. Об этом тоже можно спросить у маятника.

Следует поступать аналогично уже описанным вариантам гадания: написать название каждого предприятия, о котором хочется узнать (по одному предприятию на одном листе). Затем под каждым названием предприятия написать такие вопросы:

  • Какая заработная плата на этом предприятии?
  • Какое будущее у этого предприятия?
  • Хорошим ли будет коллектив на новой работе?

Необходимо записывать все ответы маятника: если маятник

вращается по часовой стрелке, то ответ «да», если же против часовой стрелки — «нет». Осталось лишь сравнить результаты.

Пружинный маятник

Пружинный маятник — это колебательная система, состоящая из материальной точки массой т и пружины. Рассмотрим горизонтальный пружинный маятник (рис. 13.12, а). Он представляет собой массивное тело, просверленное посередине и надетое на горизонтальный стержень, вдоль которого оно может скользить без трения (идеальная колебательная система). Стержень закреплен между двумя вертикальными опорами. К телу одним концом прикреплена невесомая пружина. Другой ее конец закреплен на опоре, которая в простейшем случае находится в покое относительно инерциальной системы отсчета, в которой происходят колебания маятника. В начале пружина не деформирована, и тело находится в положении равновесия С. Если, растянув или сжав пружину, вывести тело из положения равновесия, то со стороны деформированной пружины на него начнет действовать сила упругости, всегда направленная к положению равновесия. Пусть мы сжали пружину, переместив тело в положение А, и отпустили \((\upsilon_0=0).\) Под действием силы упругости оно станет двигаться ускоренно. При этом в положении А на тело действует максимальная сила упругости, так как здесь абсолютное удлинение xm пружины наибольшее. Следовательно, в этом положении ускорение максимальное. При движении тела к положению равновесия абсолютное удлинение пружины уменьшается, а следовательно, уменьшается ускорение, сообщаемое силой упругости. Но так как ускорение при данном движении сонаправлено со скоростью, то скорость маятника увеличивается и в положении равновесия она будет максимальна. Достигнув положения равновесия С, тело не остановится (хотя в этом положении пружина не деформирована, и сила упругости равна нулю), а обладая скоростью, будет по инерции двигаться дальше, растягивая пружину. Возникающая при этом сила упругости направлена теперь против движения тела и тормозит его. В точке D скорость тела окажется равной нулю, а ускорение максимально, тело на мгновение остановится, после чего под действием силы упругости начнет двигаться в обратную сторону, к положению равновесия. Вновь пройдя его по инерции, тело, сжимая пружину и замедляя движение, дойдет до точки А (так как трение отсутствует), т.е. совершит полное колебание. После этого движение тела будет повторяться в описанной последовательности. Итак, причинами свободных колебаний пружинного маятника являются действие силы упругости, возникающей при деформации пружины, и инертность тела.

Рис. 13.12

По закону Гука \(~F_x=-kx.\) По второму закону Ньютона \(~F_x = ma_x.\) Следовательно, \(~ma_x = -kx.\) Отсюда

\(a_x = -\frac{k}{m}x\) или \(a_x + -\frac{k}{m}x = 0 \) — динамическое уравнение движения пружинного маятника.

Видим, что ускорение прямопропорционально смешению и противоположно ему направлено. Сравнивая полученное уравнение с уравнением гармонических колебаний \(~a_x + \omega^2 x = 0,\) видим, что пружинный маятник совершает гармонические колебания с циклической частотой \(\omega = \sqrt \frac{k}{m}\) Так как \(T = \frac{2 \pi}{\omega},\) то

\(T = 2 \pi \sqrt{ \frac{m}{k} }\)— период колебаний пружинного маятника.

По этой же формуле можно рассчитывать и период колебаний вертикального пружинного маятника (рис. 13.12. б). Действительно, в положении равновесия благодаря действию силы тяжести пружина уже растянута на некоторую величину x, определяемую соотношением \(~mg=kx_0.\) При смещении маятника из положения равновесия O на х проекция силы упругости \(~F’_{ynpx} = -k(x_0 + x)\) и по второму закону Ньютона \(~ma_x=-k(x_0+ x) + mg.\) Подставляя сюда значение \(~kx_0=mg,\) получим уравнение движения маятника \(a_x + \frac{k}{m}x = 0,\) совпадающее с уравнением движения горизонтального маятника.

Оцените статью
Рейтинг автора
5
Материал подготовил
Андрей Измаилов
Наш эксперт
Написано статей
116
Добавить комментарий