Содержание
- 1 Процесс легирования
- 2 описание, список и особенности применения
- 3 XX. Белые чугуны: получение, свойства, применение
- 4 Особенности легирования
- 5 Легирование чугуна
- 6 Примечания
- 7 Классификация углеродистых сталей
- 8 Воздействие легирующих элементов
- 9 Легирование чугунов
- 10 См. также
- 11 Где используется легированная сталь
- 12 Легированные стали
- 13 Калькулятор количества досок в 1 кубе. Таблица сечений пиломатериалов. Таблица сколько 6 метровых досок в одном кубе
- 14 Ссылки
- 15 Подведение итогов
Процесс легирования
Основным способом легировать сталь является метод объёмного металлургического легирования. Заключается в сплавлении основного элемента с легирующими в печах разного вида (индукционные, вакуумно-дуговые, тигельные, конвертеры, дуговые, плазменные, и др.). При этом способе возможна существенная потеря активных веществ (марганца, хрома, молибдена, и др.).
Существуют также:
- механическое легирование,
- восстановление,
- электролиз,
- плазмохимическая реакция.
Механическое легирование выполняют в аттриторах – барабанах, в центре которых находится вал с кулачками. В них закладывают порошкообразные компоненты для получения нужного сплава. Во время вращения кулачки «ударяют» по смеси, и происходит «вбивание» легирующих добавок в основу.
При совместном восстановлении перемешивают оксиды элементов сплава с восстановителем, например, с гидридом кальция (СаН2) и производят нагрев. Идёт реакция восстановления оксидов до металлов, синхронно происходит процесс диффузии, выравнивающий состав сплава. Полученный оксид кальция (СаО) промывают водой, а сплав (в виде порошка) идёт в следующую обработку. Металлотермическое восстановление подразумевает использование металлов (магния, кальция, алюминия и др.) в качестве восстановителей.
описание, список и особенности применения
Развитие отождествляется с совершенствованием. Улучшение промышленных и бытовых возможностей осуществляется с помощью использования материалов с прогрессивными характеристиками. Это, в частности, легированные металлы. Их разнообразие определяется возможностями коррекции количественного и качественного состава легирующих элементов.
Природно-легированная сталь
Первое выплавленное железо, которое по своим свойствам отличалось от сородичей, было природно-легированным. В выплавляемом доисторическом метеоритном железе содержалось повышенное количество никеля. Его находили в древнеегипетских захоронениях 4-5 тысячелетий до н. э., из такого же сооружен памятник архитектуры Кутаб Минар в Дели (V век). Японские булатные мечи изготавливались из железа, насыщенного молибденом, а дамасская сталь содержала вольфрам, характерный для современной быстрорежущей. Это были металлы, руда для которых добывалась из определенных мест.
Сплавы современного производства могут содержать природные компоненты металлического и неметаллического происхождения, которые отражаются на их характеристиках и свойствах.
Исторический путь
Фундамент для развития легирования был заложен обоснованием тигельного способа плавления стали в Европе в XVIII веке. В более примитивном варианте тигли использовались еще в древние времена, в том числе для выплавки булатной и дамасской стали. В начале 18 века эта технология получила совершенствование в промышленных масштабах и позволяла корректировать состав и качество исходного материала.
- Одновременное открытие все новых и новых химических элементов, подталкивало исследователей на экспериментальные опыты выплавки.
- Установлено негативное влияние меди на качество стали.
- Открыта латунь, содержащая 6 % железа.
Проводились опыты с точки зрения качественного и количественного влияния на стальной сплав вольфрама, марганца, титана, молибдена, кобальта, хрома, платины, никеля, алюминия и прочих.
Первое промышленное производство стали, легированной марганцем, налажено в начале XIX века. Оно же получило развитие с 1856 года в рамках бессемеровского процесса выплавки.
XX. Белые чугуны: получение, свойства, применение
Получение белого чугуна зависит от наличия в составе чугуна карбидо-образующих элементов и скорости охлаждения. Наличие марганца, хрома, ванадия, вольфрама, молибдена и ряда других элементов способствует образованию белого чугуна. Повышенные скорости охлаждения также способствуют образованию белого чугуна.
Читать также: Торцевая пила по дереву своими руками
белый чугун обладает высокой твердостью (HB = 4500 – 5500 МПа), хрупок и практически не поддастся обработке резанием. Поэтому белый чугун имеет ограниченное применение, как конструкционный материал.
Белый чугун как конструкционный материал не применяется. Весь он идет на дальнейшую выплавку стали, поэтому называется иногда передельным чугуном
Уже более 3 000 лет человечество обрабатывает железо изготавливая различные орудия, машины, домашнюю утварь. Несмотря на относительно высокие механические свойства этого металла его разрушение в результате коррозии не способствует долговременному использованию железных изделий на открытом воздухе.
Ещё одним существенным ограничением в использовании данного металла является его невысокие эстетические качества. Чтобы существенно улучшить данные свойства при производстве стали используются добавки придающие устойчивость к окислению, появлению на её поверхности блеска и существенному увеличению прочности металла.
Особенности легирования
Современные возможности позволяют выплавлять легированные металлы любого состава. Основные принципы рассматриваемой технологии:
- Компоненты считаются легирующими только в том случае, если они вводятся целенаправленно и содержание каждого превышает 1 %.
- Сера, водород, фосфор считаются примесями. В качестве неметаллических включений используются бор, азот, кремний, редко – фосфор.
- Объемное легирование – это введение компонентов в расплавленную субстанцию в рамках металлургического производства. Поверхностное представляет собой способ диффузионного насыщения поверхностного слоя необходимыми химическими элементами под действием высоких температур.
- В ходе процесса добавки изменяют кристаллическую структуру «дочернего» материала. Они могут создавать растворы проникновения или исключения, а также размещаться на границах металлической и неметаллической структур, создавая механическую смесь зерен. Большую роль тут играет степень растворимости элементов друг в друге.
Легирование чугуна
Чугуны отличаются от сталей значительным содержанием углерода (от 2,14 до 6,67 %), высокой твердостью и коррозионной стойкостью, однако незначительной прочностью. С целью расширения диапазона показательных свойств и сфер применения, его легируют хромом, марганцем, алюминием, силицием, никелем, медью, вольфрамом, ванадием.
В связи с особыми характеристиками данного железоуглеродистого материала, его легирование — более сложный процесс, чем для стали. Каждый из компонентов влияет на преобразование форм карбона в нем. Так марганец способствует формированию «правильного» графита, что повышает прочность. Введение других же имеет следствием переход углерода в свободное состояние, отбеливание чугуна и снижение его механических свойств.
Технология усложняется невысокой температурой плавления (в среднем, до 1000 ˚С), тогда как для большинства легирующих элементов она значительно превышает этот уровень.
Наиболее эффективно для чугунов комплексное легирование. Одновременно, следует учитывать повышение вероятности ликвации таких отливок, риска трещинообразования, дефектов литья. Осуществлять технологический процесс более рационально в электромагнитных и индукционных печах. Обязательным последовательным этапом является качественная термообработка.
Хромистые чугуны характеризуются высокой износостойкостью, прочностью, жаростойкостью, устойчивостью к старению и коррозии (ЧХ3, ЧХ16). Применяются в химическом машиностроении и в производстве металлургического оборудования.
Кремнием, отличаются высокой коррозионной стойкостью и устойчивостью к влиянию агрессивных химических соединений, хотя и удовлетворительными механическими свойствами (ЧС13, ЧС17). Формируют детали химической аппаратуры, трубопроводов и насосов.
Примером высокопродуктивного комплексного легирования являются жаропрочные чугуны. Они содержат в своем составе черные и легирующие металлы, такие как хром, марганец, никель. Для них характерна высокая стойкость к коррозии, износостойкость и устойчивость к высоким нагрузкам в условиях высокотемпературных воздействий — детали турбин, насосов, двигателей, аппаратуры химической промышленности (ЧН15Д3Ш, ЧН19Х3Ш).
Важным компонентом является медь, которая задействована в комплексе с другими металлами, при этом повышает литейные характеристики сплава.
Примечания
Классификация углеродистых сталей
Кроме классификации по структурным параметрам,их принято различать по технологии получения:
- электрические УС;
- мартеновские;
- кислородно-конвертерные.
По уровню раскисления подразделяют материал:
По качеству, в соответствии с наличием и объемам вредных примесей железный сплав бывает:
- обычного качества;
- качественные стали.
По сфере использования УС бывают:
- обычные;
- инструментальные;
- конструкционные.
По наличию и объемам С в углеродистом железном сплаве материал классифицируют:
- высокоуглеродистые стали марки с содержанием С более 0,65%;
- среднеуглеродистые – от 0,25 до 0,6%;
- низкоуглеродистые стали марки с содержанием С до 0,25%.
Чем выше показатели углерода, тем тверже и прочнее материал, но и выше его хрупкость. Маркировка материала напрямую связана с его назначением:
- Обычного качества обозначают условным буквенным обозначением Ст. Далее следуют цифры от 1 до 7, которые показывают содержание С (углерода), кратное 10. Производства железных сплавов этой группы регламентирует ГОСТ380-85. Дополнительно эти материалы принято различать по группе поставок: А, Б и В. Это обозначение указывается перед маркой (группа А не указывается). Для А – стабильны механические свойства, для Б стабильны механический состав, для В стабильны свойства и состав.
- Конструкционные УС регламентирует ГОСТ380-88, маркировка осуществляется цифрами: от 08 и до 85. Эти цифры информируют о содержании С (углерода) в материале в сотых долях %. Если железный сплав характеризуется увеличенным содержанием марганца, в конце маркировки указывается Г.
- Инструментальные УС регламентирует ГОСТ1435-54 и 5952-51. Этот железный сплав относится к качественным, и маркируется буквой У. Далее следуют цифры, которые показывают объемы углерода в десятых долях %. Существует подгруппа высшего качества, в этом случае обозначение завершается буквой А. Им характерно повышенное содержание углерода.
В обозначении марки принято указывать степень раскисления: пс или кс.
Воздействие легирующих элементов
В первую очередь следует сказать, что основополагающее влияние на свойства стали оказывает углерод. Именно этот элемент обеспечивает с повышением своей концентрации увеличение прочности и твердости при снижении вязкости и пластичности. Кроме того, повышенная концентрация углерода гарантирует ухудшение обрабатываемости резанием.
Содержание хрома в стали напрямую влияет на ее коррозионную стойкость. Этот химический элемент формирует на поверхности сплава в агрессивной окислительной среде тонкую защитную оксидную пленку. Однако для достижения такого эффекта в стали хрома должно быть не менее 11,7%.
Особого внимания заслуживает алюминий. Его применяют в процессе легирования стали для удаления кислорода и азота после ее продувки, дабы поспособствовать уменьшению старения сплава. Кроме того, алюминий значительно повышает ударную вязкость и текучесть, нейтрализует крайне вредное влияние фосфора.
Ванадий – это особый легирующий элемент, благодаря которому легированные инструментальные стали получают высокую твёрдость и прочность. При этом в сплаве уменьшается зерно и повышается плотность.
Легированная сталь, марки которой содержат вольфрам, наделена высокой твёрдостью и красностойкостью. Вольфрам хорош также и тем, что он полностью устраняет хрупкость во время запланированного отпуска сплава.
Для увеличения жаропрочности, магнитных свойств и сопротивления значительным ударным нагрузкам сталь легируют кобальтом. А вот одним из тех элементов, который не оказывает какого-либо существенного влияния на сталь, является кремний. Однако в тех марках стали, которые предназначены для сварных металлоконструкций, концентрация кремния должна быть обязательно в пределах 0,12-0,25 %.
Значительно повышает механические свойства стали магний. Его также используют в качестве десульфуратора в случае использования внедоменной десульфурации чугуна.
Низколегированная сталь (марки ее содержат легирующих элементов менее 2,5%) очень часто содержит марганец, что обеспечивает ей непременное увеличение твердости, износоустойчивости при сохранении оптимальной пластичности. Но при этом концентрация этого элемента должна быть более 1%, иначе не получится достигнуть указанных свойств.
Углеродистые марки стали, выплавляемые для различных масштабных строительных конструкций, содержат в себе медь, которая обеспечивает максимальные антикоррозионные свойства.
Для увеличения красностойкости, упругости, предела прочности при растяжении и стойкости к коррозии в сталь обязательно вводят молибден, который также еще и повышает сопротивление окислению металла при нагреве до высоких температурных показателей. В свою очередь церий и неодим применяются для снижения пористости сплава.
Рассматривая влияние легирующих элементов на свойства стали, нельзя обойти вниманием и никель. Данный металл позволяет стали получить превосходную прокаливаемость и прочность, повысить пластичность и ударопрочность и понизить предел хладноломкости
Очень широко используется в качестве легирующей добавки и ниобий. Его концентрация, в 6-10 раз превышающая количество обязательно присутсвтующего углерода в сплаве, позволяет устранить межкристаллитную коррозию нержавеющей марки стали и предохраняет сварные швы от крайне нежелательного разрушения.
Титан позволяет получить самые оптимальные показатели прочности и пластичности, а также улучшить коррозионную стойкость. Те стали, которые содержит эту добавку, очень хорошо подвергаются обработке различным инструментом специального назначения на современных металлорежущих станках.
Введение в стальной сплав циркония дает возможность получить требуемую зернистость и при необходимости оказывать влияние именно на рост зерна.
Легирование чугунов
Экономное легирование железоуглеродистых сплавов является популярным и востребованным на сегодня развивающимся
методом ресурсосберегающих технологий.
В последнее время легирование чугунов получает всё большее распространение, особенно в промышленно развитых странах (как и легирование сталей).
Это происходит, потому что качество продукции становится важнее количества, которое обеспечивает производство отливок из низкокачественного
нелегированного серого чугуна — благодаря как рыночной экономике, так и общим разумным принципам развития общества.
Марки легированного чугуна для отливок регламентирует ГОСТ 7769-82. Легирование чугуна производят хромом, кремнием, марганцем, никелем,
медью, молибденом, титаном, фосфором, алюминием. Легирование чугуна осуществляют с целью повышения коррозионной стойкости, жаростойкости,
износостойкости чугуна и др. Легированные чугуны подразделяют на хромистые, кремнистые, алюминиевые, марганцевые, никелевые
(См. Нирезист).
Повышение жаростойкости алюминиевых чугунов достигается в основном двумя путями : поверхностным и объемным легированием. Среди многочисленных
способов поверхностного легирования широкое распространение получило алитирование, повышающее жаростойкость и особенно
коррозионноустойчивость чугуна. Но авторы считают наиболее перспективным способ объёмного легирования алюминием.
При выборе технологий легирования сталей, чугунов и других сплавов требуется индивидуальный подход, анализ многообразия легирующих материалов и способов
и рациональная проработка для конкретных производственных условий.
По вопросам легирования чугунов, сталей и сплавов вы можете обратиться к специалистам Исследовательского центра Модификатор.
Контакты >>
Подготовлено: Корниенко А.Э. (ИЦМ)
Лит.:
Иванов В.Н. Словарь-справочник по литейному производству. – М.: Машиностроение, 1990. – 384 с.: ил.
Леках С.Н., Бестужев Н.И. Внепечная обработка высококачественных чугунов в машиностроении. Мн.: Наука и техника, 1992. — 269 с.
Экономное легирование железоуглеродистых сплавов Леках С.Н., Мартынюк М.Н., Случкий А.Г., Трибушевский В.Л., Шитов Е.И.,
Шишкин А.Е.; Под общ. ред С.Н. Лекаха. — Мн.: Навука i тэхнiка, 1996. — 173 с. — ISBN 5-343-0172-Х.
ГОСТ 977-88 Отливки стальные. Общие технические условия.
Бобро Ю.Г. Легированные алюминием чугуны с шаровидным графитом / В сб. «Литейное производство: научно-исследовательские и опытные работы. Труды всесоюзного совещания». — М.: МАШГИЗ, 1960. — 252 с.
ГОСТ 7769-82. Чугун легированный для отливок со специальными свойствами. Марки.
См. также
Где используется легированная сталь
Легированная сталь — сталь, которая, кроме обычных примесей, содержит элементы, специально вводимые в определённых количествах для обеспечения требуемых физических или механических свойств. Эти элементы называются легирующими.
Легирующие добавки повышают прочность, коррозийную стойкость стали, снижают опасность хрупкого разрушения. В качестве легирующих добавок применяют хром, никель, медь, азот (в химически связанном состоянии), ванадий, титан и др.
Легированную сталь по степени легирования разделяют на:
- низколегированную (легирующих элементов до 2,5 %),
- среднелегированную (от 2,5 до 10 %)
- высоколегированную (от 10 до 50 %)
Маркировка
Легированные стали маркируются цифрами и буквами, указывающими примерный состав стали. Буква показывает, какой легирующий элемент входит в состав стали.
Г | марганец | Mn |
С (от лат. «силициум») | кремний | Si |
Х | хром | Cr |
Н | никель | Ni |
Д | медь | Cu |
А | азот | N |
Ф | ванадий | V |
Б | ниобий | Nb |
В | вольфрам | W |
Е | селен | Se |
К | кобальт | Co |
Л | бериллий | Be |
М | молибден | Mo |
Р | бор | B |
Т | титан | Ti |
Ю (от «ювенал») | алюминий | Al |
Ц | цирконий | Zr |
П (от лат. «phosphorus») | фосфор | P |
Ч | редкоземельные металлы |
Стоящая за буквой цифра обозначает среднее содержание элемента в процентах. Если элемента содержится менее 1 %, то цифры за буквой не ставятся. Первые две цифры указывают среднее содержание углерода в сотых долях процента, если цифра одна, то содержание углерода в десятых долях процента.
Дополнительные обозначения в начале марки:
Р — быстрорежущая; Ш — шарикоподшипниковая; А — автоматная; Э — электротехническая; Л — полученная литьём;
- содержание в шарикоподшипниковых сталях хрома в десятых долях процента (например, ШХ4 — Cr 0,4 %);
- в марке быстрорежущей стали, цифра после «Р» — содержание вольфрама в %, и во всех быстрорежущих сталях содержание хрома 4 %.
Буква А в середине марки стали показывает содержание азота, а в конце — что сталь чистая по сере и фосфору (содержание фосфора и серы в такой стали не превышает 0,03 %). Две буквы А в конце — «АА» — означают, что сталь особо чистая (ещё более чистая по сере и фосфору).
- сталь 18ХГТ — 0,18 % С, 1 % Сr, 1 % Мn, около 0,1 % Тi;
- сталь 38ХН3МФА — 0,38 % С, 0,8—1,2 % Сr; 3-3,5 % Ni, 0,35—0,45 % Мо, 0,1—0,18 % V;
- сталь 30ХГСА — 0,30 % С, 0,8—1,1 % Сr, 0,9—1,2 % Мn, 0,8—1,25 % Si;
- сталь 03Х13АГ19 — 0,03 % С, 13 % Сr, 0,2—0,3 % N, 19 % Мn.
На сегодняшний день крайне трудно переоценить значимость металлургической продукции, которая часто применяется и в строительстве, и в промышленности, и в производстве бытовых приспособлений. Однако легированные стали заслуживают особого внимания, ведь без них многие отрасли (пищевая, нефтяная, автомобилестроительная и т. д. ) не смогли бы исполнить свои задачи в полной мере.
Появляется вполне логичный вопрос: что же представляет собой сталь легированного типа? Каким образом происходит классификация легирующих компонентов? Какими преимуществами обладает высоколегированный материал, и как производится легирование стали?
Описание металла
Для начала необходимо выяснить, что же собой представляет этот металлический сплав.
Итак, этот материал, по сути, является сплавом углерода и железа, содержащим особые элементы, оказывающие воздействие на физические и механические характеристики готовых изделий.
Компоненты, добавляемые к нему, называются легирующими. Медь, ванадий, марганец, никель и хром — самые распространенные из них.
Разновидности легированной стали
Легированный металл классифицируется по процентному содержанию легирующих элементов в своем составе:
- низколегированный сплав — до 2,5%;
- среднелегированный — от 2,5 до 10%;
- высоколегированный — от 10 до 50%.
Следует рассмотреть и другой важный момент. Сталь высоколегированного типа и сплавы на ее основе обладают своей классификацией и особенностями, а также могут использоваться при разных условиях:
- жаропрочные (жароустойчивые) стали;
- устойчивые к воздействию коррозии.
Легированные стали
Легирующими элементами называют элементы, специально вводимые в сталь для изменения ее строения и свойств. Соответственно стали, содержащие легирующие элементы, называются легированными. При этом, если содержание кремния превышает 0,4 % или марганца — 0,8 %, то они также относятся к легирующим элементам.
Концентрация некоторых легирующих элементов может быть очень малой. В количестве до 0,1 % вводят Nb, Ti, а содержание бора обычно не превышает 0,005 % . Если концентрация элемента составляет около 0,1 % и менее, легирование стали принято называть микролегированием.
Появление и широкое распространение легированных сталей обусловлено непрерывным ростом требований, предъявляемых к материалам по мере прогресса техники. Легирование производится с целью изменения механических (прочности, пластичности, вязкости), физических (электропроводности, магнитных характеристик, радиационной стойкости) и химических (коррозионной стойкости в разных средах) свойств.
Необходимый комплекс свойств обычно обеспечивается не только легированием, но и термической обработкой, позволяющей получать наиболее оптимальную структуру металла. Легированные стали дороже углеродистых, и поэтому применять их без термической обработки нерационально.
Применение легирующих элементов существенно влияет на себестоимость стали. При использовании тех или иных легирующих элементов руководствуются не только их влиянием на свойства стали, но и экономическими соображениями, в частности стоимостью добычи и получения, а также дефицитностью.
Основными легирующими элементами являются Cr, Ni, Mn, Si, W, Mo, V, Al, Cu, Ti, Nb, Zr, В. Часто сталь легируют не одним, а несколькими элементами, например Cr и Ni, получая хромоникелевую сталь, Cr и Mn — хромомарганцевую сталь, Cr, Ni, Mo, V — хромоникельмолибденованадиевую сталь.
Легирующие элементы, вступая во взаимодействие с железом и углеродом, могут участвовать в образовании различных фаз в легированных сталях:
- легированного феррита — твердого раствора легирующего элемента в Feα;
- легированного аустенита — твердого раствора легирующего элемента в Feγ;
- легированного цементита — твердого раствора легирующего элемента в цементите или при увеличении содержания легирующего элемента сверх определенного предела — специальных карбидов.
Если проанализировать с помощью двойных диаграмм состояния систему железо — легирующий элемент, как легирующие элементы влияют на расширение области γ-твердого раствора железа (легированного аустенита) и, наоборот, на сужение области γ-твердого раствора и соответственно расширение области α-твердого раствора, т. е. легированного феррита, то по этому влиянию все легирующие элементы можно разделить на две группы: расширяющие область γ-твердых растворов — аустенитообразующие легирующие элементы и сужающие γ-область (расширяющие область α-твердых растворов) — ферритообразующие легирующие элементы.
К числу аустенитообразующих легирующих элементов относятся Ni, Mn, Со, Cu, С, N. К числу ферритообразующих легирующих элементов относятся Cr, Si, Al, Mo, V, Ti, W, Nb, Zr.
При легировании сталей аустенитообразующими элементами в большом количестве может произойти полное «выклинивание» области α-Fe, и в этом случае стали будут иметь аустенитную структуру при комнатной температуре — аустенитные стали.
Наоборот, при легировании сталей ферритообразующими элементами в большом количестве может произойти «выклинивание» области γ-Fe, и стали приобретут чисто ферритную структуру — ферритные стали.
При комбинированном легировании сталей аустенитообразующими и ферритообразующими элементами структура стали будет состоять из аустенита и феррита, а стали будут аустенитноферритные.
В большинстве конструкционных сталей феррит при температуре эксплуатации является основной структурной составляющей, занимающей не менее 90 % объема металла. Поэтому от свойств феррита во многом зависят свойства стали в целом. Чем больше разница в атомных размерах железа и легирующего элемента, тем больше искажение кристаллической решетки, тем выше твердость, прочность, но ниже пластичность и особенно вязкость феррита.
Калькулятор количества досок в 1 кубе. Таблица сечений пиломатериалов. Таблица сколько 6 метровых досок в одном кубе
Ссылки
- «Легирование» — статья в «Химической энциклопедии»
- «Легирование» — статья в «Металлургическом словаре»
- «Легирование» — статья в «Энциклопедии Кирилла и Мефодия»
Wikimedia Foundation
.
2010
.
Синонимы
Смотреть что такое «Легирование» в других словарях:
— (нем. legieren сплавлять от лат. ligo связываю, соединяю), 1) Введение в состав металлических сплавов т. н. легирующих элементов (напр., в сталь Cr, Ni, Mo, W, V, Nb, Ti и др.) для придания сплавам определенных физических, химических или… … Большой Энциклопедический словарь
— (нем. Legirung, от лат. ligare связывать). Сплавливание благородного металла с каким либо другим. Словарь иностранных слов, вошедших в состав русского языка. Чудинов А.Н., 1910. ЛЕГИРОВАНИЕ нем. Legirung, от лат. ligare, связывать. Сплавление… … Словарь иностранных слов русского языка
— (немецкое legieren сплавлять, от латинского ligo связываю, соединяю), введение в металлический расплав или шихту элементов (например, в сталь хрома, никеля, молибдена, вольфрама, ванадия, ниобия, титана), повышающих механические, физические и… … Современная энциклопедия
Подведение итогов
Процесс легирования – это сложный технологический процесс, который используется для улучшения или изменения изначальных характеристик стали. Во время этой процедуры используются основные легирующие элементы или второстепенные. Могут использоваться реактивы из обеих групп сразу. Также стоит помнить о том, что добавление некоторых элементов будет не только улучшать определенные характеристики, но и ухудшать другие. А потому прежде, чем приступить к данному процессу, необходимо проводить тщательные расчеты. Для выполнения этой задачи на заводах и фабриках присутствуют технологи, которые устанавливают состав для каждой марки стали, а также точно определяют количество, какое необходимо добавить в массу, чтобы достичь нужного эффекта.