Содержание
- 1 Пружины, подвергаемые напряжению кручения
- 2 Определение коэффициента жесткости растяжения
- 3 Вопрос 8.4 Замена системы пружин эквивалентной пружиной
- 4 Формулы для силы тока
- 5 Советы по выбору матраса
- 6 Ответ
- 7 Примеры применения параллельного соединения резисторов
- 8 Жесткость пружины
- 9 Теплофизические свойства меди: КТР и удельная теплоемкость меди
- 10 Смешанное соединение приемников энергии
- 11 Видео
- 12 Преимущества и недостатки
- 13 Последовательное соединение
- 14 Отличия пружин подвески и их маркировка
- 15 Вычисление работы силы упругости
Пружины, подвергаемые напряжению кручения
Торсионные стержни
Для торсионов обычно отбираются стержни круглого поперечного сечения. Они обладают фактором использования очень большого объема, что означает, что они могут поглотить много энергии, но при этом занимать мало места.
Винтовые пружины
Цилиндрические винтовые пружины производятся как пружины сжатия и растяжения. Уравнения вычисления характеристик идентичны для обоих типов пружин. Пружины сжатия конической формы позволяют оптимизировать использование пространства, если отдельные пружины могут быть вставлены друг в друга.
Эксцентриситет силы может быть минимизирован на пружинах сжатия, если пружину наматывать так, чтобы концы проводов на каждом конце пружины коснулись смежного витка. Каждый конец пружины в виде плоской поверхности основания перпендикулярен оси пружины. Чтобы избежать перегрузки пружины, должно поддерживаться минимальное расстояние между активными витками. Для статических напряжений применяются данные, приведенные в табл. «Винтовые пружины».
Для расчета динамического напряжения расстояние Sa должно быть удвоено. Дополнительно концы пружин должны располагаться на 180° друг к другу. Общее количество витков всегда должно быть кратно половине витка (например, nt = 7,5). Эффект искривления провода учитывается коэффициентом напряжения к (табл. «к-фактор» ).
В случае статического напряжения этот эффект может быть проигнорирован, тогда, например, принимается к=1. Следующее соотношение относится к диапазону напряжений, преобладающему в случае динамического напряжения:
τkh = k • 8D/πd3 • (F2 — F1) ≤ τkH
Определение коэффициента жесткости растяжения
Для определения коэффициента жесткости растяжения производятся следующие расчеты.
- Измеряется длина пружины в вертикальном подвесе с одной свободной стороной изделия – L1;
- Измеряется длина пружины с подвешенным грузом – L2.Если взять груз массой 100гр., то он будет воздействовать силой в 1Н (Ньютон) – величина F;
- Вычисляется разница между последним и первым показателем длины – L;
- Рассчитывается коэффициент упругости по формуле: k = F/L.
Определение коэффициента жесткости сжатия производится по этой же формуле. Только вместо подвешивания груз устанавливается на верхнюю часть вертикально установленной пружины.
Подводя итог, делаем вывод, что показатель жесткости пружины является одной из существенных характеристик изделия, которая указывает на качество исходного материала и определяет долговечность использования конечного изделия.
При воздействии внешних сил тела способны приобретать ускорения или деформироваться. Деформацией называют изменение размеров и (или) формы тела. Если после снятия внешней нагрузки тело восстанавливает свои размеры и форму полностью, то такая деформация называется упругой.
Пусть на пружину на рис.1 действует растягивающая сила, направленная вертикально вниз.
При воздействии деформирующей силы ($overline$) длина пружины увеличивается. В пружине возникает сила упругости ($<overline>_u$), которая уравновешивает деформирующую силу. Если деформация небольшая и упругая, то удлинение пружины ($Delta l$) пропорционально деформирующей силе:
где в качестве коэффициента пропорциональности выступает жесткость пружины $k$. Коэффициент $k$ называют также коэффициентом упругости, коэффициентом жесткости. Жесткость (как свойство) характеризует упругие свойства тела, подвергаемого деформации – это возможность тела оказывать противодействие внешней силе, сохранять свои геометрические параметры. Коэффициент жесткости является основной характеристикой жесткости.
Коэффициент жесткости пружины зависит от материала, из которого изготовлена пружина, ее геометрических характеристик. Так, коэффициент жесткости витой цилиндрической пружины, которая намотана из проволоки круглого сечения, подвергаемая упругой деформации вдоль своей оси вычисляется при помощи формулы:
где $G$ -модуль сдвига (величина зависящая от материала); $d$ – диаметр проволоки; $d_p$ – диаметр витка пружины; $n$ – количество витков пружины.
Вопрос 8.4 Замена системы пружин эквивалентной пружиной
П
1 Параллельное соединение(рисунок 8.1).
П
Рисунок 8.1
2 Последовательное соединение(рисунок 8.2).
П
3
Рисунок 8.2
«Двухстороннее» соединение
П
Любую систему пружин можно представить как набор рассмотренных схем.
Рисунок 8.3
Лекция 9 Динамика материальной системы.
(2 часа, 1 семестр, 2 курс)
Вопрос 9.1Теорема о движении центра масс материальной системы.
Центром масс материальной системы называют точку, радиус-вектор
где
mi,
i
,
где xi,yi,zi– координаты центра массi-го тела системы.
При решении задач динамики материальной системы часто оказывается полезной теорема о движении центра масс:произведение массы материальной системы на ускорение ее центра массaC равно геометрической сумме внешних сил, приложенных к системе:
В ходе решения выражение теоремы проецируют на оси координат. При этом получается система уравнений
Использование теоремы о движении центра масс материальной системы для решения задач динамики рекомендуется осуществлять по следующей методике:
1 Изображается материальная система, и указываются все внешние силы, действующие на нее.
2 Выбираются оси координат.
3 Внешние силы, действующие на систему, проецируются на выбранные оси.
4 Записываются выражения координат центра масс системы через координаты центров масс одного из тел системы.
5 Дифференцируя выражения координат центра масс по времени, получают зависимости для скорости и ускорения центра масс системы.
6 Полученные выражения подставляются в систему динамических уравнений.
7 Решается дифференциальное уравнение относительно искомой координаты с учетом заданных начальных условий.
Вопрос 9.2Динамические уравнения движения твердого тела.
Динамические уравнения движения твердого тела устанавливают связь между кинематическими характеристиками движения тела и действующими на него силами.
Поступательное движение тела.В этом случае динамическое уравнение представляет собой следствие из теоремы о движении центра масс:
,
где m– масса тела;
i
При решении задач динамическое уравнение поступательного движения тела проецируют на оси координат.
Вращательное движение тела. Для него динамическое уравнение имеет вид:
,
где Jz– момент инерции тела относительно оси вращенияz;
– угловое ускорение тела;
Miz– моментi-й силы относительно оси вращения.
При составлении динамического уравнения вращательного движения тела выбирается направление отсчета угла поворота . Моменты сил, вращающих тело против выбранного направления, принимаются отрицательными, а по выбранному направлению – положительными.
Момент инерции Jz является мерой инертности тела при вращательном движении. Момент инерции материальной системы относительно данной осиOzопределяется как сумма произведений масс всех точек системы на квадраты их расстояний от этой оси:
Для абсолютно твердого тела суммирование по точкам системы заменяется интегрированием по объему
,
где ρ – плотность материала тела;
h– расстояние от точки с координатамиx,y,zдо осиOz.
Момент инерции JCтела относительно осиCz, проходящей через центр массC, называютцентральным моментом инерции. Если для тела известенрадиус инерцииi, то центральный момент
Центральные моменты инерции некоторых тел:
1 Тонкий однородный стержень с массой mи длинойl:
2 Тонкое круглое однородное кольцо с массой mи радиусомR:
3 Круглый однородный диск с массой mи радиусомR:
Формулы для силы тока
О ней всегда идет речь в теме «Электричество». Параллельное и последовательное соединение по-разному влияют на величину силы тока в резисторах. Для них выведены формулы, которые можно запомнить. Но достаточно просто запомнить смысл, который в них вкладывается.
Так, ток при последовательном соединении проводников всегда одинаков. То есть в каждом из них значение силы тока не отличается. Провести аналогию можно, если сравнить провод с трубой. В ней вода течет всегда одинаково. И все препятствия на ее пути будут сметаться с одной и той же силой. Так же с силой тока. Поэтому формула общей силы тока в цепи с последовательным соединением резисторов выглядит так:
I общ = I 1 = I 2
Здесь буквой I обозначена сила тока. Это общепринятое обозначение, поэтому его нужно запомнить.
Ток при параллельном соединении уже не будет постоянной величиной. При той же аналогии с трубой получается, что вода разделится на два потока, если у основной трубы будет ответвление. То же явление наблюдается с током, когда на его пути появляется разветвление проводов. Формула общей силы тока при параллельном соединении проводников:
I общ = I 1 + I 2
Если разветвление составлено из проводов, которых больше двух, то в приведенной формуле на такое же количество станет больше слагаемых.
Смотреть галерею
Советы по выбору матраса
Чтобы выбрать матрас с независимым пружинным блоком и не ошибиться, рекомендуется не торопиться с покупкой. Отзывы покупателей не всегда могут отражать реальную картину. Известно, что мнения относительно параметров изделия не всегда могут совпадать.
Рекомендуется проконсультироваться с менеджером магазина, лично проверить изделие на жесткость. Если продавцы позволят полежать на матрасе, стоит воспользоваться предложением и лично убедиться, насколько матрас комфортен конкретно для вас.
Только убедившись, что это матрас, на котором вам хотелось бы спать, можно оформлять покупку.
Ответ
Проверено экспертом
Сейчас будем думать логически если пружины соединены последовательно и имеют одинаковую жесткость ( k = k1 = k2 ) , и общее растяжение системы пружин ( x’ ) будет равно сумме растяжений первой пружины ( x1 ) и второй пружины ( x2 ) , также сила упругости действующая на первую пружину ( F1 ) будет равна силе упругости действующая на вторую пружину ( F2 ) и будет равна сила упругости действующая на всю систему пружин ( F’ ) ( по 3 закону Ньютона ), поэтому
как мы говорили ранее
приведём к общему знаменателю и получим
k’ = 250² / ( 2 * 250 ) = 125 Н/м
Теперь мы получили две пружины с жесткостью ( k’ = 125 Н/м и k3 = k = 250 Н ) они уже соединены параллельно , значит общие растяжение системы пружин ( x» ) будет равно растяжению ( x’ ) пружины жесткостью ( k’ ) и будет равно растяжению ( x ) пружины жесткостью ( k ) , поэтому
А уже теперь общая сила упругости ( F» ) будет равна сумме сил упругости ( F’ и F3 ) пружин жесткостью ( k’ и k ) , значит
Пружины являются важным элементом самых различных механизмов. Для изменения основных эксплуатационных свойств проводится использование нескольких подобных изделий, которые соединяются различным образом. Тип применяемого метода соединения учитывается при проведении самых различных расчетов.
Примеры применения параллельного соединения резисторов
Одним из примеров параллельного соединения резисторов является шунт в приборе для измерения токов, которые слишком велики для того, чтобы быть напрямую измеренными прибором, предназначенным для измерения небольших токов или напряжений. Для измерения тока параллельно гальванометру или электронному прибору, измеряющему напряжение, подключается резистор с очень маленьким точно известным сопротивлением, изготовленный из материала со стабильными характеристиками. Этот резистор называется шунтом. Измеряемый ток протекает через шунт. В результате на нем падает небольшое напряжение, которое и измеряется вольтметром. Поскольку падение напряжения пропорционально току, протекающему через шунт с известным и точным сопротивлением, вольтметр, подключенный параллельно шунту, можно проградуировать непосредственно в единицах тока (амперах).
Параллельные и последовательные схемы часто используются для получения точного сопротивления или если резистора с требуемым сопротивлением нет или он слишком дорог, если его приобретать в небольших количествах для массового производства
. Например, если устройство содержит много резисторов по 20 кОм и необходим только один резистор 10 кОм. Конечно, несложно найти резистор на 10 кОм. Однако для массового производства иногда бывает лучше поставить два резистора на 20 кОм параллельно, чтобы получить необходимые 10 кОм. Это приведет к снижению себестоимости печатной платы, так как будет снижена оптовая цена компонентов, а также стоимость монтажа, так как будет уменьшено количество типоразмеров элементов, которые должен установить на плату автомат установки компонентов.
Проверим справедливость показанных здесь формул на простом эксперименте.
Возьмём два резистора МЛТ-2
на 3
и 47 Ом
и соединим их последовательно. Затем измерим общее сопротивление получившейся цепи цифровым мультиметром. Как видим оно равно сумме сопротивлений резисторов, входящих в эту цепочку.
Замер общего сопротивления при последовательном соединении
Теперь соединим наши резисторы параллельно и замерим их общее сопротивление.
Измерение сопротивления при параллельном соединении
Как видим, результирующее сопротивление (2,9 Ом) меньше самого меньшего (3 Ом), входящего в цепочку. Отсюда вытекает ещё одно известное правило, которое можно применять на практике:
При параллельном соединении резисторов общее сопротивление цепи будет меньше наименьшего сопротивления, входящего в эту цепь.
Что ещё нужно учитывать при соединении резисторов?
Во-первых, обязательно
учитывается их номинальная мощность. Например, нам нужно подобрать замену резистору на 100 Ом
и мощностью 1 Вт
. Возьмём два резистора по 50 Ом каждый и соединим их последовательно. На какую мощность рассеяния должны быть рассчитаны эти два резистора?
Поскольку через последовательно соединённые резисторы течёт один и тот же постоянный ток (допустим 0,1 А
), а сопротивление каждого из них равно 50 Ом
, тогда мощность рассеивания каждого из них должна быть не менее 0,5 Вт
. В результате на каждом из них выделится по 0,5 Вт
мощности. В сумме это и будет тот самый 1 Вт
.
Данный пример достаточно грубоват. Поэтому, если есть сомнения, стоит брать резисторы с запасом по мощности.
Подробнее о мощности рассеивания резистора читайте .
Во-вторых, при соединении стоит использовать однотипные резисторы, например, серии МЛТ. Конечно, нет ничего плохого в том, чтобы брать разные. Это лишь рекомендация.
Параллельное соединение резисторов, наряду с последовательным, является основным способом соединения элементов в электрической цепи. Во втором варианте все элементы установлены последовательно: конец одного элемента соединен с началом следующего. В такой схеме сила тока на всех элементах одинаковая, а падение напряжений зависит от сопротивления каждого элемента. В последовательном соединении есть два узла. К одному подсоединены начала всех элементов, а ко второму их концы. Условно для постоянного тока можно обозначить их как плюс и минус, а для переменного как фазу и ноль. Благодаря своим особенностям находит широкое применение в электрических схемах, в том числе и со смешанным соединением. Свойства одинаковы для постоянного и переменного тока.
Жесткость пружины
При воздействии внешних сил тела способны приобретать ускорения или деформироваться. Деформацией называют изменение размеров и (или) формы тела. Если после снятия внешней нагрузки тело восстанавливает свои размеры и форму полностью, то такая деформация называется упругой.
Пусть на пружину на рис.1 действует растягивающая сила, направленная вертикально вниз.
При воздействии деформирующей силы ($\overline{F}$) длина пружины увеличивается. В пружине возникает сила упругости (${\overline{F}}_u$), которая уравновешивает деформирующую силу. Если деформация небольшая и упругая, то удлинение пружины ($\Delta l$) пропорционально деформирующей силе:
\
где в качестве коэффициента пропорциональности выступает жесткость пружины $k$. Коэффициент $k$ называют также коэффициентом упругости, коэффициентом жесткости. Жесткость (как свойство) характеризует упругие свойства тела, подвергаемого деформации — это возможность тела оказывать противодействие внешней силе, сохранять свои геометрические параметры. Коэффициент жесткости является основной характеристикой жесткости.
Коэффициент жесткости пружины зависит от материала, из которого изготовлена пружина, ее геометрических характеристик. Так, коэффициент жесткости витой цилиндрической пружины, которая намотана из проволоки круглого сечения, подвергаемая упругой деформации вдоль своей оси вычисляется при помощи формулы:
\
где $G$ -модуль сдвига (величина зависящая от материала); $d$ — диаметр проволоки; $d_p$ — диаметр витка пружины; $n$ — количество витков пружины.
Единицы измерения жесткости пружины
Единицей измерения коэффициента жесткости в Международной системе единиц (Си) является ньютон, деленный на метр:
\=\left=\frac{\left}{\left}=\frac{Н}{м}.\]
Коэффициент жесткости равен величине силы, которую следует приложить к пружине для изменения ее длины на единицу расстояния.
Жесткость соединений пружин
При последовательном соединении $N$ пружин жесткость соединения вычисляется при помощи формулы:
\
Если пружины соединены параллельно, то результирующая жесткость равна:
\
Примеры задач на жесткость пружин
Пример 1
Задание. Какова потенциальная энергия ($E_p$) деформации системы из двух параллельно соединенных пружин (рис.2), если их жесткости равны: $k_1=1000\ \frac{Н}{м}$; $k_2=4000\ \frac{Н}{м}$, а удлинение составляет $\Delta l=0,01$ м.
Решение. При параллельном соединении пружин жесткость системы вычислим как:
\
Потенциальную энергию деформированной системы вычислим при помощи формулы:
\
Вычислим искомую потенциальную энергию:
\
Ответ. $E_p=0,\ 25$ Дж
Пример 2
Задание. Чему равна работа ($A$) силы растягивающей систему из двух последовательно соединенных пружин, имеющих жесткости $k_1=1000\ \frac{Н}{м}\ \ и$ $k_2=2000\ \frac{Н}{м}$, если удлинение второй пружины составляет $\Delta l_2=0,\ 1\ м$?
Решение. Сделаем рисунок.
При последовательном соединении пружин на каждую из них действует одна и та же деформирующая сила ($\overline{F}$), используя этот факт и закон Гука найдем удлинение первой пружины:
\
Работа силы упругости при растяжении первой пружины, равна:
\
Учитывая полученное в (2.1) удлинение первой пружины имеем:
\
Работа второй силы упругости:
\
Работа силы, которая растягивает систему пружин в целом, будет найдена как:
\
Подставим правые части выражений (2.3) и (2.4) в формулу (2.5), получаем:
\
Вычислим работу:
\
Ответ. $А$=30 Дж
Читать дальше: затухающие колебания.
Теплофизические свойства меди: КТР и удельная теплоемкость меди
Смешанное соединение приемников энергии
Наиболее широко распространено смешанное соединение приемников электрической энергии. Данной соединение представляет собой сочетание последовательно и параллельно соединенных элементов. Общей формулы для расчёта данного вида соединений не существует, поэтому в каждом отдельном случае необходимо выделять участки цепи, где присутствует только лишь один вид соединения приемников – последовательное или параллельное. Затем по формулам эквивалентных сопротивлений постепенно упрощать данные участи и в конечном итоге приводить их к простейшему виду с одним сопротивлением, при этом токи и напряжения вычислять по закону Ома. На рисунке ниже представлен пример смешанного соединения приемников энергии
Пример смешанного соединения приемников энергии.
В качестве примера рассчитаем токи и напряжения на всех участках цепи. Для начала определим эквивалентное сопротивление цепи. Выделим два участка с параллельным соединением приемников энергии. Это R1||R2 и R3||R4||R5. Тогда их эквивалентное сопротивление будет иметь вид
В результате получили цепь из двух последовательных приемников энергии R12R345 эквивалентное сопротивление и ток, протекающий через них, составит
Тогда падение напряжения по участкам составит
Тогда токи, протекающие через каждый приемник энергии, составят
Видео
Из этого видео вы узнаете, как определить жесткость пружины.
Чем большей деформации подвергается тело, тем значительней в нем возникает сила упругости. Это значит, что деформация и сила упругости взаимосвязаны, и по изменению одной величины можно судить об изменении другой. Так, зная деформацию тела, можно вычислить возникающую в нем силу упругости. Или, зная силу упругости, определить степень деформации тела.
Если к пружине подвешивать разное количество гирек одинаковой массы, то чем больше их будет подвешено, тем сильнее пружина растянется, то есть деформируется. Чем больше растянута пружина, тем большая в ней возникает силы упругости. Причем опыт показывает, что каждая следующая подвешенная гирька увеличивает длину пружины на одну и туже величину.
Так, например, если исходная длина пружины была 5 см, а подвешивание на ней одной гирьки увеличило ее на 1 см (т. е. пружина стала длиной 6 см), то подвешивание двух гирек увеличит ее на 2 см (общая длина составит 7 см), а трех — на 3 см (длина пружины будет 8 см).
Еще до опыта известно, что вес и возникающая под его действием сила упругости находятся друг с другом в прямопропорциональной зависимости. Кратное увеличение веса во столько же раз увеличит силу упругости. Опыт же показывает, что деформация точно также зависит от веса: кратное увеличение веса во столько же раз увеличивает изменения в длине. Это значит, что, исключив вес, можно установить прямопропорциональную зависимость между силой упругости и деформацией.
Если обозначить удлинение пружины в результате ее растяжения как x или как ∆ l ( l 1 – l , где l — начальная длина, l 1 — длина растянутой пружины), то зависимость силы упругости от растяжения можно выразить такой формулой:
В формуле используется коэффициент k . Он показывает, в какой именно зависимости находятся сила упругости и удлинение. Ведь удлинение на каждый сантиметр может увеличивать силу упругости одной пружины на 0,5 Н, второй на 1 Н, а третьей на 2 Н. Для первой пружины формула будет выглядеть как Fупр = 0,5x, для второй — Fупр = x, для третьей — Fупр = 2x.
Коэффициент k называют жесткостью пружины. Чем жестче пружина, тем труднее ее растянуть, и тем большее значение будет иметь k. А чем больше k, тем больше будет сила упругости (Fупр) при равных удлинения (x) разных пружин.
Жесткость зависит от материала, из которого изготовлена пружина, ее формы и размеров.
Единицей измерения жесткости является Н/м (ньютон на метр). Жесткость показывает, сколько ньютонов (сколько сил) надо приложить к пружине, чтобы растянуть ее на 1 м. Или насколько метров растянется пружина, если приложить для ее растяжения силу в 1 Н. Например, к пружине приложили силу в 1 Н, и она растянулась на 1 см (0,01 м). Это значит, что ее жесткость равна 1 Н / 0,01 м = 100 Н/м.
Также, если обратить внимание на единицы измерения, то станет понятно, почему жесткость измеряется в Н/м. Сила упругости, как и любая сила, измеряется в ньютонах, а расстояние – в метрах
Чтобы уровнять по единицам измерения левую и правую части уравнения Fупр = kx, надо в правой части сократить метры (то есть поделить на них) и добавить ньютоны (то есть умножить на них).
Соотношение между силой упругости и деформацией упругого тела, описываемое формулой Fупр = kx, открыл английский ученый Роберт Гук в 1660 году, поэтому это соотношение носит его имя и называется законом Гука.
Упругой деформацией является такая, когда после прекращения действия сил, тело возвращается в свое исходное состояние. Бывают тела, которые почти нельзя подвергнуть упругой деформации, а у других она может быть достаточно большой. Например, поставив тяжелый предмет на кусок мягкой глины, вы измените его форму, и этот кусок сам уже не вернется в исходное состояние. Однако если вы растяните резиновый жгут, то после того, как отпустите его, он вернет свои исходные размеры. Следует помнить, что закон Гука применим только для упругих деформаций.
Формула Fупр = kx дает возможность по известным двум величинам вычислять третью. Так, зная приложенную силу и удлинение, можно узнать жесткость тела. Зная, жесткость и удлинение, найти силу упругости. А зная силу упругости и жесткость, вычислить изменение длины.
Преимущества и недостатки
Любое изделие для сна имеет свои оригинальные характеристики. Как следствие, матрас может иметь ряд достоинств и некоторые недостатки. Чего больше в моделях с независимыми пружинными блоками?
Плюсы
- модели с независимыми пружинами не скрипят в процессе эксплуатации, так как в них не соприкасаются металлические элементы;
- могут использоваться для людей с различным весом, так как в них работает точечное сжатие, и они не создают эффект гамака;
- обеспечивают равномерное распределение нагрузки и сохраняют естественное положение позвоночника;
- позволяют полностью расслабиться и восстановить силы;
- способны выдерживать значительные нагрузки, до 150 (иногда 200) кг;
- имеют длительный срок эксплуатации благодаря прочному чехлу и прочным наполнителям.
Минусы
- единственный недостаток моделей с независимыми пружинными блоками — высокая цена;
- встречаются негативные отзывы о быстром износе изделий (как правило, это вызвано неправильной эксплуатацией матрасов).
Последовательное соединение
Этот способ подразумевает, что все приборы, входящие в состав электроцепи, связываются между собой проводами так, что во фрагменте цепи, где происходит включение, отсутствуют какие-либо узелки. При последовательном соединении проводников значение токовой силы в разных участках будет иметь одно и то же значение. Это связано с тем, что в безузловой цепи электронный заряд идет по одному и тому же проводнику. Чтобы вычислить общий показатель цепного напряжения, нужно сложить данные по всем фрагментам цепи:
U = U1 + U2 +…+Un.
При объединении аккумуляторных или гальванических единиц в одну батарею последовательный способ поможет увеличить рабочее напряжение.
Резисторы
Общее сопротивление цепи с последовательно связанными резисторами высчитывается по тому же правилу, что и напряжение: оно равно сумме показателей для каждого элемента.
Катушка индуктивности
Когда дроссели соединены последовательно так, чтобы магнитное поле каждой катушки не накладывалось на соседние дроссели, общая индуктивность такого соединения будет равна сложенным параметрам всех катушек:
L = L1+L2 +…+Ln.
Электрический конденсатор
Когда несколько конденсаторов соединяется между собой в цепь, соотношение их емкостей может быть описано такой формулой:
1/С = 1/С1 +1/С2 +…+ 1/Cn.
Мемристивность цепи оценивается как сумма показателей всех подсоединенных компонентов:
M = M1 +M2 +… + Mn.
Выключатели
Если несколько таких устройств подсоединены в цепь последовательно, она будет замкнутой только при замыкании всех устройств. Если хоть один переключатель разомкнуть, цепь также размыкается. При выходе из строя какого-либо устройства остальные тоже перестанут функционировать. Это правило распространяется и на цепь из нескольких розеток.
Для домашней разводки проводов
Хотя данный способ потенциально мог бы принести потребителю определенные выгоды (экономия проводников, упрощение подключения заземления), на практике для подключения бытовых электроприборов он не используется. Это связано с тем, что неисправность одного из устройств приводит к прекращению функционирования остальных. Этот пример можно проиллюстрировать на елочной гирлянде: в ней используется именно рассматриваемый тип соединения, в случае перегорания какой-либо из ламп остальные затухают. Именно поэтому электроприборы в домашнюю сеть всегда подключаются параллельно.
Важно! При принятии решения соединить последовательно несколько устройств целесообразно составить таблицу их мощностей и оценить на предмет величины перепадов. Если подключить в одну электроцепь, например, нагреватель воды с большой мощностью, потребляющий много энергии, и маломощный прибор вроде старого приемника, более мощный прибор не сможет работать
Практическое использование последовательной схемы
Для замены кабелей
Если соединить несколько кабелей в одну линию, в случае перегорания какого-либо из элементов ток будет пропадать на всей протяженности конструкции. Поэтому подключение параллельных проводников является более практичным вариантом. Его применяют в качестве замены толстого провода, подходящего для высокомощных нагрузок. Когда такого провода нет в наличии, подключают серию более тонких, в сумме они переносят ток, эквивалентный одному толстому. Нужные сечения находят расчетным путем, опираясь на данные о потерях напряжения. Такие конструкции широко применяются при обустройстве электролиний большой протяженности.
Отличия пружин подвески и их маркировка
Основным идентификационным параметром любой пружины служит ее наружный диаметр. Производители не могут его самопроизвольно изменить, так как этот размер определяется конструктивными особенностями самого автомобиля. Все остальные параметры могут быть абсолютно различными. Так производители могут:
- изменить диаметр прута, из которого она изготавливается и даже использовать прут, имеющий диаметр переменного значения;
- изготавливать пружины одинаковой высоты, но различной жесткости;
- изменить межвитковое расстояние и количество витков, сохраняя при этом жесткость.
Статья в тему: Как зарегистрироваться на экзамен в ГИБДД через госуслуги? Поэтому на заводах перед установкой проводят контроль статистической нагрузки. Проводится такая операция следующим образом: измеряют высоту пружины, сжав ее с определенным усилием. Так как для каждой конкретной модели автомобиля высота в сжатом состоянии регламентирована полем допуска, то детали, не попавшие в это поле, выбраковываются.
Пружины, попавшие в границы верхнего поля допуска относят к классу А (длинные), а в категорию В (короткие) попадают те, что имеют высоту в пределах нижнего поля допуска. Далее пружины одного класса маркируют краской, причем цвет маркировки зависит от модели автомобиля, на котором они должны быть установлены.
- Пружины класса А автомобилей ВАЗ маркируют по цвету желтой, белой, коричневой и оранжевой красками.
- Вид В также маркируют по цвету, но зеленой, голубой, синей и черной красками.
Маркировка по цвету наносится на внешнюю сторону витков в виде цветной полоски. Обилие цветов маркировочной краски объясняется тем, что с целью уменьшения влияния коррозии, они подвергают специальному покрытию (хлоркаучуковая эмаль или защитное эпоксидное покрытие), которое также бывает разного цвета (черное, серое, синее, белое, голубое) и определяет как модель автомобиля, так и назначение пружины (передняя или задняя). Причем на заводах, выпускающих различные модели ВАЗ и «Лада», передние элементы окрашены, как правило, в черный цвет. Исключение составляют только пружины с переменным межвитковым расстоянием (шагом) — они окрашиваются в голубой цвет.
Статья в тему: Самостоятельное приготовление электролита для АКБ
Вычисление работы силы упругости
Груз совершил известное перемещение, величину силы упругости мы также знаем, векторы перемещения и силы упругости параллельны. Казалось бы, все ясно – нужно умножить величину силы на величину перемещения и получить значение работы. Однако здесь не все так просто – разберемся почему.
О чем нам говорит формула, которая выражает величину силы упругости? О том, что сила упругости – величина не постоянная, она меняется по мере перемещения груза. И действительно, величина этой силы, как мы видим из формулы, зависит от координаты центра груза. Формула же для работы силы, которую мы применяли раньше, справедлива лишь в том случае, если сила не меняет свою величину по мере движения. Как же тогда быть? Один из вариантов выхода из данной ситуации мог бы состоять в том, что мы применим такой же метод, который применялся нами ранее в разделе кинематика при расчете перемещения тела, движущегося равноускоренно.
Можно всю траекторию движения груза разбить на очень маленькие участки (участки, в пределах которых силу упругости можно считать практически постоянной). Далее в пределах каждого такого участка мы можем рассчитать работу силы упругости ввиду ее практического постоянства. Затем работа на всей области движения груза будет складываться из всех этих маленьких работ на этих участках. Таким образом, мы сможем посчитать работу силы упругости на всей траектории движения груза. На рис. 4 приведены детали такого расчета.
Рис. 4. Зависимость силы упругости от координаты движения
Видно, что если отложить на графике зависимость модуля силы упругости от модуля координаты груза, затем проделать описанное выше разбиение на маленькие участки, то величина работы на каждом маленьком участке численно равна площади фигуры, ограниченной графиком: осью абсцисс и двумя перпендикулярами к этой оси (см. рис. 5).
Рис. 5. Площадь фигуры
Если просуммировать значение работы на каждом участке (площадь маленьких фигур), то получим площадь большой фигуры, показанной на рис. 6.
Рис. 6. Площадь большой фигуры
Поскольку данная фигура является прямоугольной трапецией, то мы можем воспользоваться формулой для расчета площади такой фигуры – это полусумма оснований, умноженная на высоту. В результате преобразований получим такую формулу – работа равна разности между величиной:
К этому результату можно прийти и несколько иным способом. Для вычисления работы силы упругости в этом способе необходимо просто взять среднее значение силы упругости и умножить его на перемещение тела. Это утверждение можно записать как:
,
где среднее значение силы упругости, которое равно полусумме начального и конечного ее значений. Если данное выражение подставить в формулу для работы, то при помощи простых алгебраических преобразований мы получим то же самое выражение, что получали ранее:
Как видно из этой формулы, работа зависит лишь от начальной и конечной координаты центра груза, и еще одно замечание: как видно из последней формулы, работа силы упругости никоим образом не зависит от массы груза. Это обусловлено тем, что и сама сила упругости не зависит от этой массы.
Теперь внимательнее посмотрим на последнюю формулу – если вынести -1 за скобки, то получим, что работа есть взятая со знаком минус разность между значениями некоторой величины, равной половине произведения жесткости пружины на квадрат ее удлинения в конечный и начальный моменты времени.
Вспомним, как мы поступили при расчете работы силы тяжести на прошлом уроке. В тот раз мы столкнулись с новой для нас физической величиной, разность между значениями которой в конечной и начальной моменты времени равнялась взятой со знаком « — » работе силы тяжести. Это величина, равная произведению массы тела на ускорение свободного падения и высоту, на которую было поднято тело над некоторым уровнем, мы назвали потенциальной энергией тела, поднятого над землей.