Инвертор из бесперебойника

Введение

UPS указанной модели в случае отключения питания к силу своей схемной реализации способен лишь обесточить нагрузку, сам он остается включенным. В данной статье описывается, как устранить этот недостаток.

Описанное здесь устройство можно использовать с любой моделью Back-UPS, но в этом случае приведенная здесь информация о коммуникационном порте может оказаться неверной.

Обзор UPS, коммуникационного порта и интерфейсного кабеля 940-0020B

Источник бесперебойного питания APC Back UPS 600I имеет топологию StandBy (Off-Line) – рис. 1.

Рис. 1. Топология StandBy

UPS, построенный по данной схеме, нередко называют термином «Off-Line UPS». В каждый конкpетный момент вpемени он может находиться в одном из 2 pежимов pаботы — Stand-by или On-line. В случае, когда напpяжение в сети находится в допустимых пpеделах (Standby mode), transfer switch пеpеключен на пpотекание тока нагpузки по цепи «Surge suppressor — Filter». В этом pежиме UPS ничем не отличается от обыкновенного сетевого фильтpа. Hикакой стабилизации напpяжения не пpоисходит. Во вpемя pаботы в этом pежиме также пpоисходит заpядка аккумулятоpных батаpей UPS.

В случае выхода напpяжения сети за допустимые пpеделы, transfer switch пеpеключается на питание нагpузки по цепи «Battery — DC/AC inverter» (On-line mode), т.е. от энеpгии аккумулятоpной батаpеи, пpеобpазуемой инвеpтоpом в AC 220V. Так как пеpеключение контактов и запуск инвеpтоpа не могут пpоисходить мгновенно, питание нагpузки будет пpеpвано на некотоpое вpемя (Transfer Time). Большинство Standby UPS обеспечивают Transfer Time поpядка 4-8 ms. Особенность данной системы в том, что пеpеключение в On-Line пpи выходе напpяжения сети за допустимые пpеделы пpоисходит немедленно, а возвpат в Standby mode — с обязательной задеpжкой в несколько секунд. Иначе, пpи многокpатных бpосках напpяжения в сети, происходило бы непpеpывное пеpеключение Standby/On-Line и обpатно, что пpивело бы к значительным искажениям тока нагpузки и возможному выходу ее из стpоя или к сбою в ее pаботе.

Пpи этом следует учесть, что данная схема обычно не обладает возможностью стабилизации напpяжения пpи pаботе в Standby mode и, следовательно, пеpеходит в On-Line пpи каждом отклонении напpяжения сети. Разpяд аккумулятоpной батаpеи пpоисходит намного быстpее, чем обpатный заpяд. Мощность battery charger’а для данной схемы обычно выбиpается сpавнительно малой, и pасхода энеpгии от батаpей во вpемя brownout’ов не компенсиpует. Следовательно, для применения в случае низкого качества питающей сети данная топология UPS малопpигодна по двум пpичинам: 

  • а) Пpи частых пеpеходах в On-Line батаpея достаточно быстpо pазpяжается, не успевая восстановить заpяд за вpемя Standby mode, в pезультате чего UPS теpяет способность обеспечить аваpийное питание нагpузки в течение тpебуемого вpемени;

  • б) Частое повтоpение циклов pазpяд/заpяд сокpащает сpок службы аккумулятоpных батаpей.

Описание топологии взято из (см. список используемых источников в конце статьи).

Коммуникационный порт

UPS имеет коммуникационный порт (рис. 2) для связи с COM-портом компьютера.

Рис. 2. Коммуникационный порт APC Back UPS

Назначение ножек порта:

  1. 1. Shutdown UPS. При батарейном питании напряжение высокого уровня RS-232 вызывает отключение инвертора и обесточивание нагрузки. UPS реагрует на этот сигнал только при питании нагрузки от батареи. На сайте APC указано, что сигнал должен действовать в течении 1 секунды, однако экспериментальная проверка показала, что UPS реагирует на сигнал немедленно.
  2. 2. Line Fail. В уровнях RS-232. Высокий уровень означает переход на батарейное питание.
  3. 3. Line Fail. Открытый коллектор. Нормально открыт.
  4. 4. GND
  5. 5. Battery Low. Открытый коллектор. Нормально открыт.
  6. 6. Line Fail. Открытый коллектор. Нормально закрыт.
  7. 7. Не используется.
  8. 8. Не используется
  9. 9. GND

Высокий уровень RS-232 – около +12в относительно земли порта, низкий – около –12в.

Примечание: при разработке каких-либо промежуточных схем можно использовать и ТТЛ уровни. UPS и COM-порт на них реагируют нормально.

Информация о разводке порте и назначении его контактов официальная, взята из (см. список используемых источников в конце статьи).

Такой полезный и нужный ИБП

Прежде чем переходить к рассмотрению возможностей ремонта ИБП своими руками, а именно об этом пойдет речь ниже, следует еще раз отметить важность этих устройств. Бесперебойники являются неким барьером между устройствами — потребителями электроэнергии и теми неприятностями, которые может принести нестабильность подаваемого в аппаратуру электрического питания

Разработчики постоянно совершенствуют свои продукты и делают их более универсальными.


Смотреть галерею

Таким образом, устройство ИБП позволяет организовать в большинстве случаев довольно надежную защиту не только ценной информации пользователя в случае с ПК при неожиданном выключении света, но и аппаратным компонентам других устройств, которые чувствительны к перепадам напряжения или его исчезновению. Но даже прибор, призванный защищать другие устройства от поломок, сам иногда может выйти из строя. Рассмотрим основные компоненты, из которых состоит бесперебойник, а также относительно легко устранимые неисправности ИБП.

Детали и печатная плата

В устройстве применены постоянные резисторы — С2-23, Р1-4 или импортные, подстроечные — СП3-19, переменные — СП4-1, СПО. Чтобы шкала переменных резисторов, регулирующих напряжение или ток, была линейной, они должны быть группы А. Терморезистор — ММТ-1. Резистор R2 изготовлен из отрезка провода ПЭВ-2 0,4 длиной 150 мм.

Кроме функции датчика тока, он работает и как плавкий предохранитель при возникновении аварийных ситуаций. Оксидные конденсаторы — импортные, на месте неполярных можно использовать керамические К10-17.

Вентилятор — компьютерный с током потребления 100.150 мА, его ширина должна быть равна ширине теплоотвода. Реле — любое, рассчитанное на коммутируемый ток 10 А и номинальное напряжение обмотки 12…15 В.XS2, XS3 — гнёзда или клеммники.

Большинство элементов размещены на двух печатных платах, изготовленных из фольгированного с одной стороны стеклотекстолита толщиной 1,5.2 мм. На первой (рис. 2) собраны выпрямители, смонтированы транзисторы VT2, VT3 с «окружающими» их элементами и некоторые другие детали.

Рис. 2. Печатная плата 1 для схемы блока питания.

Печатные проводники, соединяющие элементы мощного выпрямителя, «усилены» — на них припаяны отрезки лужёного медного провода диаметром 1 мм. «Штатные» выводы трансформатора Т1 проводные, они снабжены двумя гнёздами.

Если планируется их использовать, на первой плате монтируют соответствующие им вилки, которые выпаивают из «родной» платы ИБП. На второй плате (рис. 3) смонтированы все микросхемы, светодиоды, а также некоторые другие элементы.

Рис. 3. Печатная плата 2 для схемы блока питания.

На стороне, свободной от печатных проводников, приклеен кнопочный выключатель SA1 (П2К или аналогичный). Светодиоды должны входить в «штатные» отверстия на передней стенке корпуса, к выключателю приклеивают «штатный» толкатель.

Первая плата установлена рядом с задней стенкой корпуса, вторая — вплотную к передней. Для крепления плат использованы по два шурупа и «штатные» крепёжные пластмассовые стойки на верхней крышке корпуса.

На ребристом теплоотводе с внешними размерами 30x60x90 мм (он установлен между платами) размещены транзистор VT1, терморезистор и вентилятор.

На терморезистор надевают термоусаживаемую трубку и затем приклеивают к теплоотводу рядом с транзистором. Поскольку при изменении температуры терморезистора полевой транзистор VT3 открывается и закрывается плавно, вентилятор начинает вращение и останавливается также плавно. Поэтому транзистор VT3 может заметно разогреваться и заменить его на маломощный, например 2N7000, нельзя.

На передней панели (рис. 4) в отверстиях установлены переменные резисторы и разъёмы XS2 и XS3, к которым припаяны резистор R17 и конденсатор С7. Блочная вилка XP1 и гнездо XS1 — «родные», они размещены на задней стенке в нижней её части.

Рис. 4. Фото переделанного блока бесперебойного питания в лабораторный источник питания.

Гнездо XS1 можно использовать для подключения какого-либо устройства, работающего одновременно с лабораторным БП, например осциллографа.

Налаживание начинают с установки максимального выходного напряжения. Делают это с помощью резистора R12, движок резистора R11 при этом должен быть в верхнем по схеме положении. Если встраивать вольтметр в блок питания не планируется, резистор R11 снабжают ручкой с указателем и градуируют его шкалу.

При открытом транзисторе VT2 подборкой резистора R13 устанавливают на реле К1 номинальное напряжение, а при открытом VT3 резистором R18 устанавливают напряжение 12 В на вентиляторе M1. Температуру включения вентилятора устанавливают резистором R15.

Виды ИБП

Общий принцип работы «бесперебойника» довольно прост. Пока есть сетевое напряжение, нагрузка питается от него. Как только сетевое напряжение пропадет, нагрузка будет питаться от резервной АКБ. При появлении сетевого напряжения нагрузка снова переключится на него. На сегодняшний день существуют три типа источников бесперебойного питания, отличающихся принципом работы:

  1. Off-Line.
  2. Line-Interactive.
  3. On-Line.

Off-Line

Наиболее простой тип ИБП. Он состоит из сетевого фильтра помех, зарядного устройства, инвертора, модуля контроля и управления.

Пока присутствует сетевое напряжение, оно проходит через фильтр и поступает в нагрузку. Одновременно зарядное устройство заряжает резервный аккумулятор. Как только величина питающего напряжения выйдет за установленные пределы или оно будет недопустимо зашумлено помехами, запустится инвертор и произойдет переключение на питание от АКБ. При этом время переключения обычно составляет 4-6 мс.

К преимуществам ИБП этого типа можно отнести следующие:
простота
компактность
низкая стоимость

Недостатки:
повышенный износ АКБ (по сравнению с ИБП других типов)
отсутствие стабилизации напряжения при работе от сети
на переключение требуется время
при работе от АКБ нагрузка питается аппроксимированной синусоидой или вообще разнополярными импульсами

Line-Interactive

Устройства этого типа работают по сходному принципу, но в цепи питания от сети стоит стабилизатор, выполненный на трансформаторе со ступенчатым переключением обмоток. Это позволяет питать от сети нагрузку даже тогда, когда сетевое напряжение сильно отличается от номинального.

К преимуществам источников бесперебойного питания этого типа можно отнести:
экономичность
компактность
стабилизацию выходного напряжения
относительно низкую стоимость

К недостаткам отнесем такие:
ступенчатое изменение выходного напряжения
на переключение требуется время
при работе от АКБ нагрузка питается аппроксимированной синусоидой

On-Line

Наиболее продвинутый тип ИБП с двойным преобразованием. В нем сетевое напряжение выпрямляется и поступает на инвертор, где снова преобразуется в первоначальный вид, но уже без помех и со стабилизированным напряжением правильной синусоидальной формы. Как только сетевое напряжение пропадет, нагрузка начнет питаться от АКБ. Поскольку нагрузку всегда питает инвертор, то нет необходимости в переключении с внешней сети на инвертор, и время переключения можно считать равным нулю.

К преимуществам ИБП этого типа можно отнести следующие:
стабилизация выходного напряжения;
чистая синусоида без помех;
отсутствует задержка на переключение.

К недостаткам отнесем такие:
относительно низкая экономичность (постоянные энергозатраты на двойное преобразование);
сложная конструкция;
высокая стоимость.

Можно ли подключать автомобильный АКБ к UPS?

Мнения на этот счет двояки, но кардинально разные. Зачастую, по разным отзывам автомобильные аккумуляторы вполне справляются с данной задачей и работают стабильно. Основные проблема: газы, которые будут выделяться при зарядке АКБ и перегрев трансформатора, силовых ключей. От последней проблемы можно, хоть частично избавиться, используя дополнительные вентиляторы и т.п. А вот то от газов при зарядке никто никуда не денется. При зарядке выделяется не только взрывоопасный водород, но и другие газы, а это далеко не витамины. Если инвертор из бесперебойника используется в автомобиле, то и этот вопрос отпадает сам собой

Также важно помнить, что от сети зарядка АКБ происходит довольно небольшим током и процесс зарядки может растянуться на длительное время, от этого можно спокойно уйти если заряжать АКБ отдельно от UPS, например, для этих целей можно использовать самодельное зарядное устройство из блока питания компьютера. Использовать ли автомобильный АКБ в UPS решать нужно только Вам

comments powered by HyperComments

Однотактный автогенератор — ИБП

Схема простейшего обратноходового преобразователя:

Такой однотактный конвертер находит применение в небольших по мощности источниках питания, таких как зарядник для телефона.

Схема простейшего понижающего трансформатора. Применяется в грузовиках для прикуривателей с напряжением в 12 Вольт. То есть там, где необходимо понизить напряжение с 24 В до 12 В. Второе название однотактная схема преобразователя получила следующее — стабилизатор с ШИМ-модуляцией.

Также такую схему можно обнаружить в ресурсоёмких платах расширения, например, таких как видеокарты. При максимуме тока — минимум потерь.

Основной недостаток данной схемы — нет защиты от перегрузок, как по току, так и по напряжению.

Как сделать лабораторный блок питания

Изготовление лабораторного блока питания из старого бесперебойника — более сложная задача. Лабораторный блок питания зачастую используется радиолюбителями. Помимо трансформатора от старого ИБП, потребуются также:

  • мощный транзистор;
  • диоды для выпрямления напряжения;
  • микросхема (от ОУ);
  • реле;
  • набор светодиодов;
  • варистор;
  • разъемы;
  • оксидные конденсаторы;
  • керамические конденсаторы.

Экспликация блока питания представлена на рисунке 2.

Первичная обмотка трансформатора получает напряжение от сети через вставленный элемент FU1 и выключатель подачи питания SА1. Подключенный параллельно RU1 (варистор) служит защитой от скачков напряжения.

При помощи R1 (резистор токоограничения) и VD1 (диод) происходит питание светодиода HL1, который выполняет роль индикатора наличия сетевого напряжения.

К обмотке || подключается выпрямитель напряжения, расположенный на VD2-VD5 (диодные сборы). Положение релейных контактов К 1.1 определяет работу трансформатора как двухполупериодного с напряжением в районе 10 В или как мостового с напряжением примерно 20 В. От выпрямителя напряжение поступает к полевому транзистору.

При помощи конденсаторов С1 и С3 сглаживаются пульсации. При помощи резистора R17 обеспечивается минимальная нагрузка стабилизатора напряжения.

От собранного на VD6-VD9 (диоды) выпрямителя при участии С2 и С5 (конденсаторы) происходит питание параллельного стабилизатора на:

  • микросхемах (DA1, ОУ DA2);
  • реле К1;
  • вентиляторе M1.

HL2 (светодиод) подает сигнал при наличии напряжения в этом выпрямителе.

Порог ограничения тока устанавливается резисторами:

  • R7;
  • R8.

Управление реле (К1) происходит при помощи резистора (VT2). Выходное напряжение устанавливается R19 (подстроечный резистор). При его превышении при помощи реле происходит переключение выходного напряжения. При превышении установленного R15 (резистор) значения максимальной температуры VT3 (транзистор) и RK1 (терморезистор) запускают в работу M1 (вентилятор). Чрезмерное напряжение реле и вентилятора распределяются, соответственно, на R13 и R18 (резисторы).

При превышении порогового значения тока нагрузки уменьшается напряжение выхода ОУ. VD 10 (диод) открывается, уменьшая напряжение на VT1 (затвор транзистора) до обеспечивающих протекание тока нормальных значений. Ограничение тока устанавливается R8 и R7 (резисторы) в интервалах 0-0,5 А и 0-5 А соответственно. При помощи конденсаторов обеспечивается устойчивое функционирование токоограничителя.

С увеличением их емкости значение устойчивости также увеличивается, однако уменьшается значение быстродействия токоограничителя.

На рисунке 3 изображены собранные выпрямители, транзисторы в монтаже с взаимосвязанными элементами. Выводы трансформатора оснащены гнездами, при необходимости их использования для них производится монтаж соответствующих им вилок, выпаянных из платы от старого ИБП.

Налаживание следует начинать с определения максимального значения напряжения на выходе при помощи R12 (резистор) с движком, расположенным сверху в схеме. При помощи подборки R13 (резистор) на К1 (реле) устанавливается номинальное значение напряжения. На вентиляторе напряжение устанавливает R18 (резистор).

Налаживание выходного токоограничителя происходит путем подключения последовательно соединенных амперметра и переменного резистора с сопротивлением 15 ом и мощностью 50 Вт.

Резисторы R1, R7 устанавливаются в положение в схеме слева, а R8 — справа, с его помощью происходит регулировка выходного тока.

Режим ограничения тока позволит зарядить аккумуляторы путем установки конечного напряжения и тока. В дальнейшем доработка осуществляется установкой оборудования:

  • вольтметр;
  • амперметр;
  • комплексное измерительное устройство.

На что в ИБП нельзя полагаться

Батарея — наименее надежный элемент большинства хорошо сконструированных систем ИБП. Тем не менее архитектура ИБП может влиять на долговечность этого критичного компонента. Если держать батарею под непрерывной подзарядкой даже при отключении ИБП (как это делается во всех ИБП, производимых АРС), срок ее эксплуатации увеличивается. При выборе ИБП следует избегать топологий с высоким напряжением батареи. Следует остерегаться ИБП, в которых батарея подвергается воздействию пульсирующих токов или перегреву. В большинстве систем ИБП применяются одинаковые батареи. И все же конструктивные различия между ИБП различных систем обусловливают значительные различия в сроке службы батарей, а следовательно, и в размерах эксплуатационных затрат.

Можно ли использовать автомобильный аккумулятор для ИБП?

А теперь мы подошли к сути вопроса. Как использовать стартерный АКБ для автомобиля в ИБП. Мой ИБП BACK-UPS 600I подходит под это идеально!

Самые первые ИБП от APC серии Back UPS заряжали аккумулятор как раз по принципу зарядки АКБ постоянным напряжением. Там стоит микроконтролер управления зарядкой АКБ. Расчётная ёмкость АКБ для моего ИБП 7 Ач. Ток заряда 350 миллиампер на начальном этапе. На конечном ток падает до 10 миллиампер (фактически до тока чуть-чуть больше тока саморазряда). Более новые ИБП-шки заряжают по-другому. Я тестил более новую модель Back-UPS CS 650 (хотел даже купить), но – эта железная скотина держит напряжение на уровне 13,7 вольт. При токе заряда свыше определённого параметра эта гадость высвечивает на передней панели значок Replace Battery.

ИБП APC backups-650

Его конечно тоже можно использовать с АКБ от автомобиля, но с АКБ большой ёмкости могут быть проблемы недозаряда. С ним придётся использовать внешнюю зарядку (этот вопрос я рассмотрю ниже, в разделе Практика). Да и напряжения 13,7 вольт недостаточно, чтобы зарядить АКБ на 100%. Поэтому мне такой UPS даром не нужен. А вот с моим ИБП BACK-UPS 600I можно использовать АКБ хоть 150 Ач. Да, при полной разрядке батареи заряжать током 350 миллимпер он её будет несколько суток. Но зато гарантированно зарядит на 100%. Но и из этого положения, чтобы сэкономить время, опять же можно выйти при помощи внешней зарядки.

Принцип работы АКБ

АКБ имеет два крайних рабочих состояния – полностью разряжена и полностью заряжена. Коснусь более детально этих двух состояний. Любой автомобильный АКБ состоит из 6 “банок”. Это сленговое понятие сосуда, в котором находятся пластины и кислота. Пластины в этих сосудах соединены последовательно. Вот здесь есть первый фундаментально важный момент. Одна “банка” тоже имеет два крайних рабочих состояния – полностью разряжена с напряжением 2,00 вольт и полностью заряжена с напряжением 2,40 вольт.

  • Напряжение полностью разряженной АКБ – 12,00 вольт ( 6 х 2 )
  • Напряжение полностью заряженной АКБ – 14,40 вольт ( 6 х 2,4 )

Как же так, спросите вы? Ведь напряжение на АКБ никогда не бывает больше 13 вольт. И будете правы. Напряжение на полностью заряженной АКБ будет в пределах 12,75 – 12,80 вольт при плотности электролита 1,26 г/куб.см и при температуре 25 градусов по Цельсию. Но откуда 14,4 вольта ?.. Во время зарядки и разрядки в АКБ происходят сложные химические процессы, длящиеся после отключения зарядного устройства или нагрузки какое-то время. Это можно назвать химической инерцией. Соответственно меняется плотность электролита.

Температура в АКБ тоже может быть разной ( от -40 до +50). Когда в АКБ происходят какие-то процессы, меняются все её показатели. И они взаимосвязаны между собой. Напряжение 12,75 – 12,80 вольт – это “напряжение покоя” полностью заряженной АКБ. У полностью заряженной АКБ при подключении нагрузки напряжение упадёт. При отключении нагрузки напряжение снова будет стремиться к тем самым 12,75 – 12,80 вольтам. Но так как было отдано какое-то количество энергии напряжение (в зависимости от этого количества) до 12,75 – 12,80 вольт уже не поднимется.

АКБ считается разряженной на какое-то количество процентов. Соответственно при зарядке напряжение повышается, а когда зарядка прекращается (прекращаются и процессы внутри АКБ) напряжение снова стремится к напряжению покоя.

А вот здесь на подиуме появляется Его Величество Электрический Ток, измеряемый амперами. Чем больше ток нагрузки на АКБ, тем большее количество энергии за единицу времени батарея отдаст. И соответственно разрядится. На АКБ обычно пишут её электрическую ёмкость.

Электроёмкость АКБ это произведение постоянного тока разряда АКБ на время разряда при номинальном напряжении (для автомобильного АКБ это 12 вольт).

Соответственно за час АКБ электроёмкостью 60 Ач может отдать 60 ампер напряжением 12 вольт до её полной разрядки. Практически это выглядит так: если батарею нагружать током 60 ампер один час, её напряжение снизится с 12,75 – 12,80 вольт до 12,00 вольт. Это фундаментальная основа работы АКБ.

Практически же у АКБ есть одна очень неприятная особенность. Ток саморазряда. Причём этот ток увеличивается, если АКБ стоит на солнце и температура электролита в ней повышается. Но и ёмкость АКБ, соответственно, повышается. А вот зимой ток саморазряда уменьшается. Но и ёмкость АКБ соответственно уменьшается. Поэтому существуют стандарты на эксплуатацию, хранение, консервацию АКБ, учитывающие все эти факторы.

У новой АКБ электрической ёмкостью около 60 Ач ток саморазряда при температуре 25 градусов по цельсию обычно не превышает 20 миллиампер. Это значит, что при комнатной температуре АКБ может разрядиться наполовину своей электроёмкости за четыре-пять месяцев. При старении АКБ и при её интенсивной эксплуатации ток саморазряда повышается с каждым циклом разряд-заряд. При нагрузке на АКБ ток саморазряда и ток нагрузки суммируются. Но как же 14,40 вольт, опять настойчиво спросите ВЫ?… Вот здесь есть второй фундаментально важный момент.

Рекомендации по применению зарядного устройства

При зарядке одиночных 12 В аккумуляторов напряжение на клеммах не должны превышать 15 вольт. При зарядке сдвоенных 12 В аккумуляторов напряжение на клеммах не должно превышать 30 вольт.

При зарядке надо контролировать ток заряда. Производители аккумуляторов рекомендуют заряжать батареи в щадящем режиме – током в 0,1 ее емкости. Таким образом, для батарей 7 А*ч ток заряда должен быть 0,7 А, для батарей 12 А*ч – 1,2 А.

Производители могут приводить и максимальные токи заряда. Так, например, для той же батареи GP1272 максимальный ток заряда не должен превышать 2,16 А.

Превышать максимальный ток заряда и напряжение не клеммах не рекомендуется во избежание сокращения срока службы аккумулятора.

Можно еще почитать:

До встречи на блоге!

Выбор ИБП и определение мощности

К выбору ИПД нужно подойти очень серьезно. Все характеристики источника питания должны совпадать с требованиями оборудования. В случае ошибки велика вероятность того, что электрические приборы контура обогрева могут просто сгореть или в лучшем случае неправильно работать.

Бесперебойники для циркуляционного насоса отопления и котла бывают двух классов, которые отличаются только наличием стабилизатора напряжения:

  • линейные (on-line);
  • линейно-интерактивные (off-line).

Линейные бесперебойники не оснащены стабилизатором напряжения и передают его транзитом от сети, генератора или аккумуляторов. Линейно-интерактивные бесперебойники также называются ИПБ двойного преобразования. Такой вариант лучше, потому что напряжение преобразуется в правильную синусоиду, чего нельзя сказать о линейных агрегатах. Стабильность напряжения без перепадов очень важна для оборудования системы обогрева. Off-line бесперебойники дороже.

Оба вида ИБП всегда включены в сеть и задействуются автоматически при отключении электричества. Помимо уже описанных ими функций они также заряжают подключенные к ним аккумуляторы, некоторые модели контролируют уровень разрядки батарей

Помимо того, что характеристики ИБП должны соответствовать требования оборудования, также важно определить мощность бесперебойника

Применение более мощных агрегатов допускается, но зачем переплачивать за ненужный ресурс?

Чтобы вычислить мощность ИБП нужно суммировать всю потребляемую и пиковую мощность приборов цепи. В документации к котлу и насосу есть их потребляемая мощность.

Потребляемая мощность насоса не отображает реальной потребности в электроэнергии этого элемента цепи, так как его пусковая мощность выше потребляемой. То есть мощность резервного питания для насоса отопления нужно рассчитывать с хорошим запасом. Выполнив суммирование, вы получите значение, к которому нужно добавить еще процентов двадцать, чтобы ИБП работал не на пределе своих возможностей.

Ещё полезные статьи

Переделав бесперебойник на инвертор, на выходе мы получим:

  • стабилизатор напряжения;
  • зарядное устройство;
  • и конечно инвертор.

После нашей переделки, если бесперебойник на 300 Вт, то на него можно нагрузить Вт 200. Конечно, чем мощней бесперебойник, тем больше можно увеличить на него нагрузку.

В некоторых бесперебойниках попадаются места, где можно дополнительно усилить мощность. Эти места называются транзисторными ключами. Стоит их допаять, как мощность бесперебойника увеличится.

Производители порой не допаивают такие транзисторы, чтобы удешевить изделие. Транзисторы нужно такого же номинала, как и установлены.

Так же следует увеличить сечение проводов от разъёма платы до АКБ на крокодилы.

От трансформатора вторичной обмотки до клем платы,

нужно добавить в параллель ещё по одному проводу для увеличения сечения.

Трансформатор пришлось немного расковырять, чтобы добраться до выхода вторичной обмотки. Этих проводов выходит три штуки.

Чтобы бесперебойник не пищал каждую минуту, мы должны выпаять круглую пищалку.

Далее в корпусе я коронкой по гипсу или по дереву высверлил отверстие для вентилятора и расположил его так, чтобы он дул на ключи транзисторов и радиаторов.

На задней стенке удалил ненужные разъёмы и оставил отверстие от них для выхода воздуха.

От этих клем находим два провода питания 220 вольт – выход с платы после преобразователя и эти провода выводим наружу, закрепляем свою розетку.

Наш инвертор из бесперебойника почти готов. Для контроля разряда батареи автомобильного аккумулятора можно встроить цифровой вольтметр. Я на всякий случай ещё подключил термодатчик для контроля температуры на транзисторных ключах. Термопару от мультиметра закрепил на радиаторе транзистора полевика.

Немаловажный момент: инвертор из бесперебойника должен иметь запуск холодного включения – это функция, когда он может включаться без внешнего питания от бытовой розетки 220 вольт. В некоторых моделях кнопка включения холодного пуска имеет двойное нажатие с разным интервалом времени.

Вот и все переделки. Такой инвертор можно брать с собой в поездку – на пикник, рыбалку, дома – через него можно подключать лампы, ноутбук, заряжать телефоны, фонарики, на даче и в сельской местности – подключать инкубатор, освещение теплицы и т. д., но не более 70% мощности от нашего изделия.

Для освещения лучше использовать диодные лампы, они мало тянут и ярко горят. Так же я подключал паяльник на 80 Вт, даже телевизор работает без проблем.

Алекс Олейник

В быту иногда возникает острая необходимость в бесперебойном питании различных устройств. Это могут быть аварийное освещение, инкубаторы, аквариумное оборудования или простой усилитель, с которым компания вырвалась на природу. Современные бюджетные компьютерные источники бесперебойного питания способны проработать не более получаса от автономного питания, а те которые могут и специально для этого предназначены, стоят совсем других денег. Автомобильные инверторы на выходе не всегда выдают частоту в 50 Гц. Если нужна автономность на несколько часов, тогда в голову сразу приходит мысль, можно ли запитать UPS от обыкновенного автомобильного аккумулятора. На этот вопрос мы и постараемся сегодня дать ответ, сделаем инвертор из ИБП своими руками.

НЕМНОГО ИСТОРИИ или с чего всё началось

В начале 2000-ых годов ко мне в руки попал старенький источник бесперебойного питания BACK-UPS 600I от басурманского производителя APC. Достался он мне бесплатно, так как батареи у него были дохлые. Конечно же я сразу его оттестил, купил рекомендованные басурманским производителем батареи и “оно у меня заработало”!

Back UPS APC

Я тогда на него не мог нарадоваться. Как же – света нет, а комп с монитором работает.

Но в один непрекрасный момент мою радость обломали.

И как Вы, Читатель, думаете кто?.. Грёбаные торгаши. Я в первый раз заменил две батареи 6В/7Ач на одну 12В/7Ач получилось немного дешевле. Но когда в течении года батарея опять сдохла, я задумался! Во-первых, батарею приходилось менять раз в год-два. Во-вторых, хотелось чтобы девайсы, подключенные к ИБП работали не несколько минут, для “корректного отключения питания”, а хотя бы до времени окончания просчёта на линейке Премьера от Адобов.

Вот тут-то у меня и начали возникать шаловливые мыслишки, а не подключить ли мне автомобильный аккумулятор на ампер 100 (чтоб уж надёжно) к моему ИБП. Тем более торгаши утверждали, что в ИБП нужно использовать только гелевые аккумуляторы, пугая Великими Карами того, кто попробует использовать гораздо более дешёвые аккумуляторы для автомобилей.

Оцените статью
Рейтинг автора
5
Материал подготовил
Андрей Измаилов
Наш эксперт
Написано статей
116
Добавить комментарий