Содержание
- 1 Добавить ваш
- 2 Литература
- 3 Реакции разложения
- 4 Как помочь пострадавшему
- 5 Получение в промышленности
- 6 sp2-Гибридизация
- 7 Углекислый газ, формула, молекула, строение, состав, вещество:
- 8 Углеводороды. Алканы. Строение, получение и свойства
- 9 Азотсодержащие органические вещества
- 10 2. Запуск Arduino IDE
- 11 Физические свойства углекислого газа:
- 12 Нормальное давление газа в системе розлива пива
- 13 Применение: газоподготовка
- 14 Порядок строительства
- 15 Причины отравления CO2
- 16 Влияние углекислого газа
- 17 Как измеряют мощность разных видов
- 18 Вредность и опасность углекислого газа
- 19 Площадь поверхности фигуры
- 20 Транспорт кровью и связь с кислородом.
- 21 Плотность и другие свойства углекислого газа CO2 в зависимости от температуры и давления
Добавить ваш
Литература
Реакции разложения
2.1. Дегидрирование и дегидроциклизация
Дегидрирование – это реакция отщепления атомов водорода.
В качестве катализаторов дегидрирования используют никель Ni, платину Pt, палладий Pd, оксиды хрома (III), железа (III), цинка и др.
Уравнение дегидрирования алканов в общем виде:
CnH2n+2 → CnH2n-х + (х+1)H2
При дегидрировании алканов, содержащих от 2 до 4 атомов углерода в молекуле, разрываются связи С–Н у соседних атомов углерода и образуются двойные и тройные связи.
Например, при дегидрировании этана образуются этилен или ацетилен: |
При дегидрировании бутана под действием металлических катализаторов образуется смесь продуктов. Преимущественно образуется бутен-2:
Если бутан нагревать в присутствии оксида хрома (III), преимущественно образуется бутадиен-1,3:
Алканы с более длинным углеродным скелетом, содержащие 5 и более атомов углерода в главной цепи, при дегидрировании образуют циклические соединения.
При этом протекает дегидроциклизация – процесс отщепления водорода с образованием замкнутого цикла.
Пентан и его гомологи, содержащие пять атомов углерода в главной цепи, при нагревании над платиновым катализатором образуют циклопентан и его гомологи:
Алканы с углеродной цепью, содержащей 6 и более атомов углерода в главной цепи, при дегидрировании образуют устойчивые шестиатомные циклы, т. е. циклогексан и его гомологи, которые далее превращаются в ароматические углеводороды.
Гексан при нагревании в присутствии оксида хрома (III) в зависимости от условий может образовать циклогексан и потом бензол:
Гептан при дегидрировании в присутствии катализатора образует метилциклогексан и далее толуол:
2.2. Пиролиз (дегидрирование) метана
При медленном и длительном нагревании до 1500оС метан разлагается до простых веществ:
Если процесс нагревания метана проводить очень быстро (примерно 0,01 с), то происходит межмолекулярное дегидрирование и образуется ацетилен:
Пиролиз метана – промышленный способ получения ацетилена.
2.3. Крекинг
Крекинг – это реакция разложения алкана с длинной углеродной цепью на алканы с более короткой углеродной цепью и алкены.
Крекинг бывает термический и каталитический.
Термический крекинг протекает при сильном нагревании без доступа воздуха.
При этом получается смесь алканов и алкенов с различной длиной углеродной цепи и различной молекулярной массой.
Например, при крекинге н-пентана образуется смесь, в состав которой входят этилен, пропан, метан, бутилен, пропилен, этан и другие углеводороды. |
Каталитический крекинг проводят при более низкой температуре в присутствии катализаторов. Процесс сопровождается реакциями изомеризации и дегидрирования. Катализаторы каталитического крекинга – цеолиты (алюмосиликаты кальция, натрия).
Как помочь пострадавшему
Первая помощь при отравлении углекислым газом, чтобы предотвратить летальный исход, должна быть оказана следующим образом:
- Прежде всего нужно вывести пострадавшего с явными признаками интоксикации на свежий воздух и освободить его от одежды, стесняющей дыхание.
- В тяжелых случаях может потребоваться ингаляция чистым кислородом.
- Если у отравившегося наблюдается тахикардия и другие нарушения сердечной деятельности, необходима симптоматическая терапия сердечно-сосудистыми средствами.
- При остановке дыхания, вызванной интоксикацией газом, возникает необходимость в искусственном дыхании.
Смертельные случаи отравления CO2 крайне редки и, как правило, связаны с нарушением техники безопасности при проведении опасных работ.
Получение в промышленности
Получение диоксида углерода в промышленности методологически разнообразно. Он находится в дымовых отходах, выпускаемых в атмосферу ТЭЦ и электростанциями, получается при брожении спирта и выступает как продукт реакции с природными карбонатами.
Индустрия получения двуокиси углерода широка. Газ можно абсорбировать несколькими способами из одного источника. Во всех случаях это поэтапный процесс очистки от примесей (для достижения требований ГОСТа) и достижения нужной консистенции, агрегатного состояния.
Получение газообразной двуокиси углерода
Газообразный CO2 извлекают из промышленных (нефтяных) дымов путем адсорбции моноэтаноламина (коммерчески выгодно) и карбонатом калия (редко). Принцип сбора частиц углерода одинаков для обоих веществ. Они направляются по трубопроводу к отходам и собирают в себя углекислый газ. После сбора, насыщенные углекислотой газы направляются на очистку.
В специальных емкостях происходит реакция в при повышенной температуре или заниженном давлении. В процессе высвобождается чистая углекислота и продукты распада (аммиак и другие).
Установка добычи углекислоты
Схематически процесс выглядит так:
- Отходящий дым смешивается с адсорбентами (газообразным карбонатом калия или моноэтаноламином);
- Накопившие в себе двуокись углерода газы поступают в специальный газгольдер для очистки;
- В реакции с высокой температурой или низким давлением происходит отделение углекислого газа от адсорбента.
В лаборатории извлечь много CO2 не получается. Но это возможно в реакции с гидрокарбонатами и кислотами. В отдельности CO2 можно выделить на промышленных станках для получения кислорода, аргона или азота. Углекислый газ здесь выступает как побочный продукт. Хранится он в специальных баллонах, поставляемых потребителю.
Получение жидкой углекислоты
Добыча жидкой углекислоты поэтапно связана с получением ее из газа. Из летучего газообразного состояния, при обработке водородом, раствором перманганата калия и углем, образуется жидкая двуокись.
Сжижение происходит из-за низкого давления, сопровождающего реакцию. После многоступенчатой очистки, жидкий диоксид углерода попадает в компрессор. Там он сжимается и подается для сушки в 2 адсорбера, поочередно перенимающие работу для восстановления. Параллельно сжатая жидкость очищается от запахов и переводится в конденсатор, а оттуда – на хранение.
Этот метод сжижения применяется для газов спиртового брожения. Он актуален для пропана, бутана и т.д. Его используют на крупных пивоварнях, а получаемая очищенная углекислота имеет высокие показатели качества.
Получение твердого диоксида углерода
Твердый диоксид образуют из жидкого путем обработки низкой температурой (-56°). В промышленных условиях только 20% переходят в твердое состояние, а остальные – испаряются.
Сухой лед
Порядок извлечения углекислотных кристаллов (сухого льда):
- Из емкости брожения газ переходит в емкость для промывки;
- В газгольдере после мытья он сжимается и сжижается;
- Многократно сжимаясь и нагреваясь, газообразный углерод охлаждается в специальных холодильниках;
- Жидкость очищается активированным углем;
- Поступает в холодильник, где охлаждается и дополнительно очищается от примесей;
- Охлажденный CO2 направляется на испарение и пресс, где комплектуется сухой лед.
sp2-Гибридизация
В sp2-гибридизацию вступают одна s-орбиталь и две p-орбитали. Одна p-орбиталь не гибридизуется:
Три sp2-гибридные орбитали атома углерода взаимно отталкиваются, и располагаются в пространстве так, чтобы угол между орбиталями был максимально возможным. |
Поэтому три sp2-гибридные орбитали атома углерода направлены в пространстве под углом 120одруг к другу, что соответствует плоскому строению (треугольник).
При этом негибридная р-орбиталь располагается перпендикулярно плоскости, в которой расположены три гибридные sp2— орбитали.
Изображение с портала orgchem.ru
Например, молекула этилена C2H4 имеет плоское строение. Сигма-связь между атомами углерода образуется за счет перекрывания sp2-гибридных орбиталей. Пи-связь между атомами углерода образуется за счет перекрывания негибридных р-орбиталей. |
Модель молекулы этилена:
Углекислый газ, формула, молекула, строение, состав, вещество:
Углекислый газ (диоксид углерода, двуокись углерода, углекислота, оксид углерода (IV), угольный ангидрид) – бесцветный газ, почти без запаха (в больших концентрациях с кисловатым «содовым» запахом).
Углекислый газ – бинарное химическое соединение углерода и кислорода, имеющее формулу CO2.
Химическая формула углекислого газа CO2.
Строение молекулы углекислого газа, структурная формула углекислого газа:
Углекислый газ тяжелее воздуха приблизительно в 1,5 раза. Его плотность при нормальных условиях составляет 1,98 кг/м3, по отношении к воздуху – 1,524. Поэтому скапливается в низких непроветриваемых местах.
Концентрация углекислого газа в воздухе (в атмосфере Земли) составляет в среднем 0,046 % (по массе) и 0,0314 % (по объему).
Углекислый газ вырабатывается в органах и тканях человека образуется в качестве одного из конечных продуктов метаболизма. Он переносится от тканей по венозной системе и затем выделяется с выдыхаемым воздухом через лёгкие. Таким образом, содержание углекислого газа в крови велико в венозной системе, уменьшается в капиллярной сети лёгких, и содержание его мало в артериальной крови. В выдыхаемом человеком воздухе содержится около 4,5% диоксида углерода, что в 60-110 раз больше, чем во вдыхаемом. Организм человека выделяет приблизительно 1 кг углекислого газа в сутки.
Углекислый газ растворяется в воде. В 100 граммах воды растворяется 0,3803 грамма CO2 при 16 °C, 0,3369 грамма CO2 – при 20 °C, 0,2515 грамма CO2 – при 30 °C. Растворяясь в воде, образует угольную кислоту Н2CO3. Растворим также в ацетоне, бензоле, метаноле и этаноле.
Термически устойчив при температурах менее 1000 °C. При температуре 1000 °C восстанавливается углем до оксида углерода (II).
При нормальном атмосферном давлении диоксид углерода не существует в жидком состоянии, существует только в твердом или газообразном состоянии. Твердая двуокись углерода при повышении температуры не плавится, а переходит (возгоняется) непосредственно из твёрдого состояния в газообразное. Твёрдую двуокись углерода также называют сухим льдом. Внешний вид сухого льда напоминает обычный лед, снегоподобную массу. При сублимации сухой лед поглощает около 590 кДж/кг (140 ккал/кг) теплоты.
Под давлением 35 000 атм. твердая углекислота становится проводником электрического тока.
Жидкий углекислый газ можно получить при повышении давления. Так, при температуре 20 °С и давлении свыше 6 МПа (~60 атм.) газ сгущается в бесцветную жидкость. При нормальных условиях (20 °С и 101,3 кПа) при испарении 1 кг жидкой углекислоты образуется 509 л углекислого газа. Хранят и транспортируют углекислый газ, как правило, в жидком состоянии
Двуокись углерода негорюча, но в ее атмосфере может поддерживаться горение активных металлов, например, щелочных металлов и щелочноземельных – магния, кальция, бария.
Двуокись углерода нетоксична, невзрывоопасна.
Предельно допустимая концентрация двуокиси углерода в воздухе рабочей зоны не установлена, при оценке этой концентрации можно ориентироваться на нормативы для угольных и озокеритовых шахт, установленные в пределах 0,5% (об.) или 9,2 г/м (см. ГОСТ 8050-85 «Двуокись углерода газообразная и жидкая. Технические условия»).
По степени воздействия на организм человека двуокись углерода относится к 4-му классу опасности по ГОСТ 12.1.007-76.
При концентрациях более 5% (92 г/м) двуокись углерода оказывает вредное влияние на здоровье человека, так как она тяжелее воздуха в полтора раза и может накапливаться в слабопроветриваемых помещениях у пола и в приямках, а также во внутренних объемах оборудования для получения, хранения и транспортирования газообразной, жидкой и твердой двуокиси углерода. При этом снижается объемная доля кислорода в воздухе, что может вызвать явление кислородной недостаточности и удушья.
Углекислый газ образуется при гниении и горении органических веществ, в результате вулканической деятельности. Содержится в воздухе и минеральных источниках, выделяется при дыхании животных и растений. Искусственными источниками образования углекислого газа являются промышленные выбросы и выхлопные газы автомобильного транспорта.
Углекислый газ легко пропускает излучение в ультрафиолетовой и видимой частях спектра, которое поступает на Землю от Солнца и обогревает её. В то же время он поглощает испускаемое Землёй инфракрасное излучение и является одним из парниковых газов, вследствие чего участвует в процессе глобального потепления.
Углеводороды. Алканы. Строение, получение и свойства
Углеводороды — органические соединения, в состав которых входят только два элемента: углерод и водород.
Алканы – алифатические (ациклические) предельные углеводороды, в которых атомы углерода связаны между собой простыми (одинарными) связями, состав которых выражается общей формулой CnH2n+2, где n – число атомов углерода.
Алканы являются углеводородами, наиболее богатыми водородом, они насыщены им до предела. Отсюда название – насыщенные или предельные углеводороды. Их также называют парафинами. Общая черта в строении алканов и циклоалканов – простая или одинарная связь между атомами углерода.
На образование этой связи затрачивается одна пара электронов, причем максимальное перекрывание орбиталей находится на линии, соединяющей центры атомов. Такую связь называют σ-связью, а электроны, образующие её – σ-электронами.
Распределение электронной плотности σ‑ связи симметрично относительно оси, проходящей через центры связанных атомов
Все атомы углерода находятся в состоянии sp3— гибридизации, валентный угол равен 109о28’, длина связи С – С составляет 1,54 Ао. Ниже приводятся формулы и названия первых десяти членов гомологического ряда предельных углеводородов и соответсвующих им алкильных радикалов.
Гомологический ряд алканов
Мелекулярная формула иНазвание алкана | Формула и название алкильного радикала |
СН4 , метан | — СН3, метил |
С2Н6, этан | — С2Н5, этил |
С3 Н8, пропан | — С3 Н7, пропил |
С4 Н10, бутан | — С4 Н9, бутил |
С5 Н12, пентан | — С 5Н11, пентил (амил) |
С6 Н14, гексан | — С6 Н13, гексил |
С7 Н16, гептан | — С 7Н15, гептил |
С8 Н18, октан | — С8 Н17, октил |
С9 Н20, нонан | — С9 Н19, нонил |
С10 Н22, декан | — С10 Н21, децил |
Для простейших алканов (С1-С4) приняты тpивиальные названия: метан, этан, пpопан, бутан, изобутан.
Начиная с пятого гомолога, названия нормальных (неpазветвленных) алканов стpоят в соответствии с числом атомов углеpода, используя гpеческие числительные и суффикс -ан: пентан, гексан, гептан, октан, нонан, декан и т.д.
В основе названия разветвленного алкана лежит название входящего в его конструкцию нормального алкана с наиболее длинной углеродной цепью. При этом углеводоpод с pазветвленной цепью pасcматpивают как пpодукт замещения атомов водоpода в ноpмальном алкане углеводоpодными pадикалами.
Напишем формулы изомеров гексана:
- СН3-СН2-СН2-СН2-СН2-СН3 — н-гексан
- СН3-СН(СН3) -СН2-СН2-СН3 СН3-СН2-СН(СН3)-СН2-СН3
- 2-метилпентан 3-метилпентан
- СН3 –С( СН3)2– СН2— СН3 СН3-СН(CH3)-СН(CH3)- СН3
- 2,2-диметилбутан 2,3 –диметилбутан
Спосoбы получения алканов:
Химические свойства алканов:
Метан используется в основном в качестве дешевого топлива. При горении он дает почти бесцветное пламя. Из метана получают ценные химические продукты: метанол, синтез-газ, формальдегид, ацетилен, различные хлорпроизводные. Этан используется при синтезе этилена.
Пропан в смеси с бутаном используется в качестве топлива. Средние члены гомологического ряда используют как горючее для двигателей (бензин, керосин), а также в качестве растворителей.
Высшие алканы – топливо для дизельных двигателей, смазочные масла и сырье для производства моющих средств.
Азотсодержащие органические вещества
Азотсодержащие вещества можно также разделить на классы по наличию определенных функциональных групп.
- амины – содержат группы –NН2, –NH–, либо -N< ,
- нитрилы (группа –СºN),
- азотистые гетероциклы.
Некоторые органические вещества содержат и азот, и кислород.
К ним относятся:
- нитросоединения –NO2
- амиды –CONH2,
- аминокислоты – полифункциональные соединения, которые содержат и карбоксильную группу –COOH, и аминогруппу –NH2
Азотсодержащие вещества | |||||
Амины | Нитрилы | Нитросоединения | Амиды | Аминокислоты | Гетероциклы |
-NH2
-NH- -N< |
-C≡N | R-NO2 | R-C(NH2)=O | -NH2, -COOH | |
Метиламин
CH3-NH2 |
Нитрил уксусной кислоты
CH3-C≡N |
Нитрометан
CH3-NO2 |
Амид уксусной кислоты
CH3-C(NH2)=O |
Аминоуксусная кислота
CH2(NH2)-COOH |
Пиррол |
2. Запуск Arduino IDE
Физические свойства углекислого газа:
Наименование параметра: | Значение: |
Химическая формула | CO2 |
Синонимы и названия иностранном языке | углерода двуокись (рус.)
углерода диоксид (рус.) угольный ангидрид (рус.) оксид углерода (IV) carbon dioxide (англ.) |
Тип вещества | неорганическое |
Внешний вид | бесцветный газ |
Цвет | бесцветный |
Вкус | кисловатый вкус |
Запах | почти без запаха (в больших концентрациях с кисловатым «содовым» запахом) |
Агрегатное состояние (при 20 °C и атмосферном давлении 1 атм.) | газ |
Плотность (состояние вещества – твердое вещество, при -79 °C и атмосферном давлении 1 атм.), кг/м3 | 1561 |
Плотность (состояние вещества – твердое вещество, при -79 °C и атмосферном давлении 1 атм.), г/см3 | 1,561 |
Плотность (состояние вещества – жидкость, при -60 °C и атмосферном давлении 1 атм.), кг/м3 | 1190 |
Плотность (состояние вещества – жидкость, при -60 °C и атмосферном давлении 1 атм.), г/см3 | 1,19 |
Плотность (состояние вещества – жидкость, при -37 °C и атмосферном давлении 1 атм.), кг/м3 | 1101 |
Плотность (состояние вещества – жидкость, при -37 °C и атмосферном давлении 1 атм.), г/см3 | 1,101 |
Плотность (состояние вещества – жидкость, при 0 °C и атмосферном давлении 35,5 атм.), кг/м3 | 925 |
Плотность (состояние вещества – жидкость, при 0 °C и атмосферном давлении 35,5 атм.), г/см3 | 0,925 |
Плотность (состояние вещества – газ, при 0 °C и атмосферном давлении 1 атм.), кг/м3 | 1,9768 |
Плотность (состояние вещества – газ, при 0 °C и атмосферном давлении 1 атм.), г/см3 | 0,0019768 |
Температура сублимации (возгонки), °C | -78,5 |
Критическая температура*, °C | 31 |
Критическое давление, МПа | 7,387 |
Критический удельный объём, м3/кг | 0,468 |
Критическая точка | 31 °C, 7,38 МПа |
Тройная точка | −56,6 °C, 0,52 МПа |
Молярная масса, г/моль | 44,01 |
Растворимость в воде, г/100 г | 0,3803 при 16 °C,
0,3369 при 20 °C, 0,2515 при 30 °C |
Теплопроводность, Вт/(м·K) | 0,0166 |
Удельная теплоемкость, Дж/(кг·К) | 849 |
Удельная теплота испарения, кДж/кг | 379,5 |
Удельная теплота плавления, кДж/кг | 205 |
Стандартная энтальпия образования ΔH (при 298 К, для состояния вещества – газ), кДж/моль | -393,51 |
Стандартная энергия Гиббса образования ΔG (при 298 К, для состояния вещества – газ), кДж/моль | -394,38 |
Стандартная энтропия вещества S (при 298 К, для состояния вещества – газ) | 213,68 |
Стандартная мольная теплоемкость Cp (298 К, для состояния вещества – газ), Дж/(моль·K) | 37,11 |
Энтальпия плавления ΔHпл, кДж/моль | 8,37 |
Энтальпия возгонки ΔHвозг, кДж/моль | 25,23 |
Скорость звука в веществе (при 20°C, состояние среды – газ), м/с | 274,6 |
Давление паров, мм.рт.ст. | 0,000001 (при -186,4°C),
0,00001 (при -180,7°C), 0,0001 (при -174,3°C), 0,001 (при -166,8°C), 0,01 (при -158°C), 2,31 (при -130°C), 9,81 (при -120°C), 34,63 (при -110°C), 104,81 (при -100°C), 279,5 (при -90°C), 672,2 (при -80°C), 1486,1 (при -70°C), 3073,1 (при -60°C), 5127,8 (при -50°C), 7545 (при -40°C), 10718 (при -30°C), 14781 (при -20°C), 19872 (при -10°C), 26142 (при 0°C), 33763 (при 10°C), 42959 (при 20°C), 54086 (при 30°C) |
* при температуре выше критической температуры газ невозможно сконденсировать ни при каком давлении.
Нормальное давление газа в системе розлива пива
Многие эксплуатируют оборудование для розлива, что называется «спустя рукава». Не проводят периодическую очистку и промывку. Забывают менять воду в проточном охладителе и пр. Следствием нарушения правил эксплуатации оборудования являются частые поломки и выход из строя линии.
Сегодня этой статьей начинается цикл статей: «Правильная эксплуатация оборудования — довольные клиенты и рост прибыли»
И так приступим.
Функции газа в системе розлива
Многие наверняка представляют, как работает система пивного оборудования. Все достаточно просто, чтобы пиво наливалось в бокал, или в бутылку необходимо давление в контуре с газом (углекислотой). Давление передается от газового баллона с редуктором, по газовой магистрали к заборной головке (или раздаточной) см. рис 1.
Рис 1. Газовый редуктор
Попадая внутрь кега, газ вытисняет пиво, и оно по трубкам от заборной головки идет уже к крану с пивом (либо к кобре или колонне, либо к пеногасителю).
Также, газовая магистраль может идти и к кранам для беспенного розлива (пеногаситель), в случае их использования в системе. В пеногасителе, углекислотный газ исполняет функцию заполнителя бутылки перед наполнением пива. Газ не дает образовываться пене в бутылке, поддерживая повышенное давление в ней. Подробнее вы можете прочесть в статье о пенагосителях: «Пеногаситель – король малого бизнеса».
Поиск максимально допустимого давления
Разобравшись, какие функции выполняет газовая магистраль, подходим к вопросу из заголовка статьи: «Какое давление нормально в газовой системе». Подсказки можно найти на самом оборудовании, которое составляет систему.
Обратимся к шлангу для подачи газа, в основном на всех высококачественных шлангах нанесена маркировка «max 3 bar», это означает, что максимальное давление, при котором может работать шланг, составляет: 3 бара, или
Редуктор служит для того чтоб, высокое давление от баллона (50-100 bar), понизить до нормального (как мы пока узнали до 3-ёх бар).
Считывание показания манометров
Применение: газоподготовка
Длительное и промежуточное хранение баллонов допускается на оборудованных кровлей и защитными перегородками рампах, исключающих попадание атмосферных осадков, в холодных и отапливаемых помещениях с естественной вентиляцией.
Жидкая углекислота в поставке для сварочных работ приобретается высшего и первого сортов. Заправка баллонов углекислотой для пищевиков дороговата, но желательна: Влажность газа нулевая.
Применение газа второго сорта допускается при возможности осушения: к 1% водного осадка добавляется нерегламентированное количество паров жидкости. Извлечением из газового потока паров воды занимается газоосушитель.
Это герметичная ёмкость с засыпкой гигроскопичными материалами. Осушители низкого давления устанавливаются после редуктора, высокого – принимают газ из баллона перед редуктором. Влагопоглотителями выступают алюмогель, силикагель, медный купорос.
Адиабатическое охлаждение газа провоцирует резкое объёмное расширение. Газопотребление в пределах 15–20 л/мин приводит к оледенению паров влаги, что чревато закупоркой редуктора. Газозабор высокого объёма требует установки газоподогревателя змеевикового типа на 24/36 В. Термоэлемент нейтрализует замерзание паров воды, рассчитан на пропуск больших объёмов.
Активная газозащита сварочных швов при полуавтоматической дуговой сварке плавящимся проволочным электродом ведётся углекислотой в чистом виде или в смеси с аргоном.
Использование баллонов подразумевает ограниченный суточный расход сварочными постами. 40-литровый баллон с внутренним давлением 6 МПа принимает 25 кг сжиженной субстанции. В газообразном виде после испарения жидкость трансформируется в 12,5 тыс. л газа.
Порядок строительства
Причины отравления CO2
Подавляющее число случаев острого и хронического отравления этим газом происходит на предприятиях, где производство требует тесного контакта с CO2.
Опасность подстерегает людей, чья деятельность связана:
- с металлургией;
- с холодильной промышленностью;
- с электросварочными работами;
- с производством сахара, соды, минеральной воды и пивных напитков;
- с химическими процессами, требующими присутствия СО2, например, при синтезе мочевины;
- с использованием сухого льда.
Нередко отравление людей углекислым газом происходит в канализационных люках, угольных шахтах, закрытых подвалах и других помещениях с минимальной вентиляцией. Еще одна группа риска, имеющая реальные шансы отравиться CO2 в силу своей деятельности, – водолазы и люди, работающие с подводным оборудованием.
Чаще всего интоксикация наступает, когда по каким-то причинам в кислородной смеси увеличивается концентрация углекислоты, при этом для развития самых серьезных симптомов 4 стадии необходимо всего лишь 5–25 минут интенсивного дыхания. Также отравление может произойти в барокамере при неисправностях разного рода.
Влияние углекислого газа
Углекислый газ является неотъемлемой частью воздушной смеси, но его концентрация на улице не высока – всего около 400-450ppm (миллионные доли, parts per million), что соответствует 0,04% объемной концентрации. Чем больше промышленных предприятий расположено в жилом районе, тем выше будет концентрация загрязняющих веществ и углекислого газа. Поэтому для таких районов характерны повышенные нормы, а для зон с благоприятной экологической обстановкой – наоборот, пониженные. Норма уровня СО2 в помещении превышает уличные значения примерно в 1,5 раза, то есть до 600ppm.
Концентрация в 800ppm уже считается небезопасной, а при 1000ppm, то есть 0,1% объемной концентрации, возникают первые признаки «отравления» (беспричинная вялость, затрудненное дыхание). Однако и эти значения все еще входят в норму: превышением по санитарным нормативам считается уровень выше 1400ppm. При таких показателях уже трудно концентрироваться на выполнении заданий, если человек на работе, и трудно нормально засыпать, если речь идет об отдыхе дома.
Критические величины – более 3000ppm (0,3%). В этом случае быстро развиваются признаки кислородного голодания, тошнит, учащается пульс.
Как измеряют мощность разных видов
Вредность и опасность углекислого газа
Двуокись углерода нетоксична и невзрывоопасна. При концентрациях более 5% (92 г/м 3 ) углекислый газ оказывает вредное влияние на здоровье человека, так как он тяжелее воздуха и может накапливаться в слабо проветриваемых помещениях у пола. При этом снижается объемная доля кислорода в воздухе, что может вызвать явление кислородной недостаточности и удушья. Помещения, где производится сварка с использованием углекислоты, должны быть оборудованы общеобменной приточно-вытяжной вентиляцией. Предельно допустимая концентрация углекислого газа в воздухе рабочей зоны 9,2 г/м 3 (0,5%).
Площадь поверхности фигуры
Рассматривая вопрос, что такое конус, приведем формулу, позволяющую определить площадь его полной поверхности. Чтобы понятнее было, о чем пойдет речь, приведем развертку на плоскость рассматриваемой фигуры.
Развертка конуса на плоскости представляет собой две фигуры. Круг — это основание конуса, круговой сектор радиусом g — это боковая поверхность. Круговой сектор легко получить, если взять бумажную коническую поверхность и разрезать ее вдоль любой генератрисы g. Развернув эту поверхность, мы получим искомый сектор.
Определение площади So круга не представляет проблем. Соответствующее выражение приведено ниже:
Что касается кругового сектора, то необходимые его параметры для расчета площади Sb также известны: радиус g и длина дуги, соответствующая длине окружности рассмотренного выше круга. Формула для расчета площади боковой поверхности конуса Sb имеет вид:
Таким образом, общая площадь фигуры равна:
Транспорт кровью и связь с кислородом.
Существует два круга кровообращения в организме: большой артериальный и малый венозный. По большому кругу транспортируется артериальная кровь, насыщенная кислородом. По малому кругу движется венозная кровь, насыщенная CO2.
Транспорт газов кровью
Раньше существовало мнение, что с выдохом углекислый газ в организме человека не остается. Однако как показывают исследования, в артериальной крови всегда присутствует определенное количество углекислоты. Концентрация ее небольшая, в пределах 6,0-7,0%, но если она превышает или наоборот, меньше этого количества, то для организма это плохо. Появляется либо переизбыток O2 в крови (Гипероксия), либо его недостаток (Гипоксемия). Это происходит потому, что обмен этими газами взаимосвязан. Чтобы эритроцит мог поглотить молекулу кислорода и связать ее с гемоглобином, он должен удалить в атмосферу молекулу диоксида углерода.
Зависимость здоровья от содержания углекислоты
При физических нагрузках обменные процессы в клетках ускоряются, чтобы вывести большее количество углекислоты, человеку необходимо чаще и глубже дышать. Процесс происходит рефлекторно. В таких случаях опасно находится в помещении с высокой концентрацией CO2, так как вместе с O2 человек вдыхает двуокись углерода. Это приводит к повышению ее концентрации в крови, а дальше к приступам удушья. Появляются головокружение, тошнота, вялость, учащается сердцебиение и дыхание (Гиперкапния).
Изучая процессы дыхания и газообмена в организме человека, ученые пришли к выводу, что опасен для здоровья не столько недостаток кислорода, сколько избыток диоксида углерода в воздухе.
Высокая концентрация этого вещества в крови приводит к гибели эритроцитов и воспалению стенок кровеносных сосудов. Так происходит если наличие углекислого газа в воздухе более 3 %. При таком уровне человек чувствует себя слабым, его тянет на сон. При концентрации 5% проявляется удушающий эффект, головные боли, головокружение.
Плотность и другие свойства углекислого газа CO2 в зависимости от температуры и давления
В таблице представлены теплофизические свойства углекислого газа CO2 в зависимости от температуры и давления. Свойства в таблице указаны при температуре от 273 до 1273 К и давлении от 1 до 100 атм.
Рассмотрим такое важное свойство углекислого газа, как плотность. Плотность углекислого газа равна 1,913 кг/м 3 при нормальных условиях (при н.у.)
По данным таблицы видно, что плотность углекислого газа существенно зависит от температуры и давления — при росте давления плотность CO2 значительно увеличивается, а при повышении температуры газа — снижается. Так, при нагревании на 1000 градусов плотность углекислого газа уменьшается в 4,7 раза.
Однако, при увеличении давления углекислого газа, его плотность начинает расти, причем значительно сильнее, чем снижается при нагреве. Например при давлении 10 атм. и температуре 0°С плотность углекислого газа вырастает уже до значения 20,46 кг/м 3 .
Необходимо отметить, что рост давления газа приводит к пропорциональному увеличению значения его плотности, то есть при 10 атм. удельный вес углекислого газа в 10 раз больше, чем при нормальном атмосферном давлении.
В таблице приведены следующие теплофизические свойства углекислого газа:
- плотность углекислого газа в кг/м 3 ;
- удельная теплоемкость, кДж/(кг·град);
- теплопроводность, Вт/(м·град);
- динамическая вязкость, Па·с;
- температуропроводность, м 2 /с;
- кинематическая вязкость, м 2 /с;
- число Прандтля.
Примечание: будьте внимательны! Теплопроводность в таблице указана в степени 10 2 . Не забудьте разделить на 100!